Skip to main content
Log in

QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

High temperature (>30 °C) at the time of grain filling is one of the major causes of yield reduction in wheat in many parts of the world, especially in tropical countries. To identify quantitative trait loci (QTL) for heat tolerance under terminal heat stress, a set of 148 recombinant inbred lines was developed by crossing a heat-tolerant hexaploid wheat (Triticum aestivum L.) cultivar (NW1014) and a heat-susceptible (HUW468) cultivar. The F5, F6, and F7 generations were evaluated in two different sowing dates under field conditions for 2 years. Using the trait values from controlled and stressed trials, four different traits (1) heat susceptibility index (HSI) of thousand grain weight (HSITGW); (2) HSI of grain fill duration (HSIGFD); (3) HSI of grain yield (HSIYLD); and (4) canopy temperature depression (CTD) were used to determine heat tolerance. Days to maturity was also investigated. A linkage map comprising 160 simple sequence repeat markers was prepared covering the whole genome of wheat. Using composite interval mapping, significant genomic regions on 2B, 7B and 7D were found to be associated with heat tolerance. Of these, two (2B and 7B) were co-localized QTL and explained more than 15 % phenotypic variation for HSITGW, HSIGFD and CTD. In pooled analysis over three trials, QTL explained phenotypic variation ranging from 9.78 to 20.34 %. No QTL × trial interaction was detected for the identified QTL. The three major QTL obtained can be used in marker-assisted selection for heat stress in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    Article  PubMed  CAS  Google Scholar 

  • Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle, and canopy temperature depression in wheat under heat stress. Field Crops Res 79:173–184

    Article  Google Scholar 

  • Barakat MA, Al-Doss AA, Elshafei AA, Moustafa KA (2011) Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci 5:104–110

    CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL

    Google Scholar 

  • Braun HJ, Rajaram S, van Ginkel M (1992) CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175–183

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fischer RA, Byerlee DB (1991) Trends of wheat production in the warmer areas: major issues and economic considerations. In: Wheat for the nontraditional warm areas. Conference Proceedings, Iguazu, Brazil. 29 July–3 Aug. 1990, CIMMYT, Mexico, D.F., pp 3–27

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–907

    Article  Google Scholar 

  • Fokar M, Nguyen HT, Blum A (1998) Heat tolerance in spring wheat. I. Genetic variability and heritability of cellular thermotolerance. Euphytica 104:1–8

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement: genomics applications in crops, vol 2. Springer, Netherlands, pp 1–24

    Chapter  Google Scholar 

  • Githiri SM, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Hays D, Mason E, Hwa Do J, Menz M, Reynolds M (2007) Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat (T. aestivum). In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Amsterdam, pp 373–382

    Chapter  Google Scholar 

  • Joshi AK, Kumar S, Ferrara O, Chand R (2004) Inheritance of resistance to spot blotch caused by Bipolaris sorokiniana in spring wheat. Plant Breed 123:213–219

    Article  Google Scholar 

  • Joshi AK, Chand R, Arun B, Singh RP, Ortiz Ferrara G (2007a) Breeding crops for reduced-tillage management in the intensive, rice–wheat systems of South Asia. Euphytica 153:135–151

    Article  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R, Ortiz Ferrara G, Singh RP (2007b) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

    Article  Google Scholar 

  • Joshi AK, Ferrara O, Crossa J, Singh G, Sharma R, Chand R, Parsad R (2007c) Combining superior agronomic performance and terminal heat tolerance with resistance to spot blotch (Bipolaris sorokiniana) in the warm humid Gangetic Plains of South Asia. Field Crops Res 103:53–61

    Article  Google Scholar 

  • Kirigwi FM, van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kumar U, Joshi AK, Kumar S, Chand R, Röder MS (2009) Mapping of resistance to spot blotch caused by Bipolaris sorokiniana in spring wheat. Theor Appl Genet 118:783–793

    Article  PubMed  CAS  Google Scholar 

  • Kumar U, Joshi AK, Kumar S, Chand R, Röder MS (2010) Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokiniana in wheat (T. aestivum L.) lines ‘Ning 8201’ and ‘Chirya 3’. Mol Breed 26:477–491

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Landjeva S, Lohwasser U, Börner A (2010) Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica 171(1):129–143

    Article  Google Scholar 

  • Lillemo M, van Ginkel M, Trethowan RM, Hernandez E, Crossa J (2005) Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci 45:2443–2453

    Article  Google Scholar 

  • Liu N, Ko S, Yeh K-C, Charng Y (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170:976–985

    Article  CAS  Google Scholar 

  • Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol 37:147–156

    Article  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Mason ER, Mondal S, Beecher WF, Hays DB (2011) Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperature under controlled conditions. Euphytica 180:181–194

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi V, Zali AA, Bihamta (2008) Mapping QTL for heat tolerance in wheat. J Agric Sci Technol 10:261–267

    Google Scholar 

  • Momcilovic I, Ristic Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99

    Article  PubMed  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34:189–203

    Article  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Pinto RS, Reynolds MP, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Pljevljakusic N, Steele D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Rane J, Pannu RK, Sohu VS, Saini RS, Mishra B, Shoran J, Crossa J, Vargas M, Joshi AK (2007) Performance of yield and stability of advanced wheat genotypes under heat stressed environments of Indo-Gangetic Plains. Crop Sci 47:1561–1573

    Article  Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    Article  PubMed  Google Scholar 

  • Reynolds MP, Balota M, Delgado MIB, Amani J, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Article  Google Scholar 

  • Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) (2001) Application of physiology in wheat breeding. CIMMYT, El Batan, Mexico. http://www.cimmyt.org/research/wheat/map/research_results/wphysio/WPhysio_contents.pdf. Accessed 18 May 2011

  • Reynolds MP, Saint Pierre C, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47:S-172–S-189

    Article  Google Scholar 

  • Reynolds MP, Manes Y, Izanloo A, Langridge P (2009) Phenotyping for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8:79–86

    Article  PubMed  Google Scholar 

  • Saint Pierre C, Crossa J, Manes Y, Reynolds MP (2010) Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet 120:1107–1117

    Article  PubMed  Google Scholar 

  • Sharma RC, Tiwari AK, Ortiz-Ferrara G (2008) Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under heat stress. Plant Breed 127:241–248

    Article  Google Scholar 

  • Singh RP, Rajaram S (1991) Genetics of adult-plant resistance of leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome 35:24–31

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Sharma RC, Joshi AK, Trethowan R (2007) High yielding spring wheat germplasm for global irrigated and rainfed production systems. Euphytica 157:351–363

    Article  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stone PJ, Nicolas ME (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Aust J Plant Physiol 21:887–900

    Article  Google Scholar 

  • Stone PJ, Nicolas ME (1995) Effect of timing of heat stress during grain filling of two wheat varieties differing in heat tolerance. I Grain growth. Aust J Plant Physiol 22:927–934

    Article  Google Scholar 

  • Thomson MJ, Ismail AM, McCouch SR, Mackill MJ (2010) Marker assisted breeding. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp 451–469

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 18 May 2010

  • Wardlaw IF, Wrigley CW (1994) Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol 21:695–703

    Article  Google Scholar 

  • Wardlaw IF, Dawson IA, Munibi P (1989) The tolerance of wheat to high temperatures during reproductive growth: II. Grain development. Aust J Agric Res 40:15–24

    Article  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007a) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007b) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Guo YQ, Yan JB, Zhang J, Song TM, Rocheford T, Li JS (2010) Major and minor QTL and epistasis contribute to fatty acid composition and oil content in high-oil maize. Theor Appl Genet 120:665–678

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weeds Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

Molecular mapping part of this research was supported by the DAAD Leibniz (German Academic Exchange Service) fellowship granted to R. Paliwal. We gratefully acknowledge the off-season facility provided by IARI Regional Station, Wellington, Tamil Nadu, India. The authors are thankful to Munna Lal, Anette Heber, and Sonja Allner for their excellent technical assistance. Help rendered by Dr. B. Arun, Banaras Hindu University, in field experimentation and R.R. Mir, ICRISAT (Hyderabad, India) in the analysis of data is gratefully acknowledged. We thank three anonymous reviewers for making useful suggestions that improved the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Joshi.

Additional information

Communicated by E. Carbonell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paliwal, R., Röder, M.S., Kumar, U. et al. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125, 561–575 (2012). https://doi.org/10.1007/s00122-012-1853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1853-3

Keywords

Navigation