Theoretical and Applied Genetics

, Volume 124, Issue 7, pp 1325–1338 | Cite as

SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum

  • Changsoo Kim
  • Dong Zhang
  • Susan A. Auckland
  • Lisa K. Rainville
  • Katrin Jakob
  • Brent Kronmiller
  • Erik J. Sacks
  • Martin Deuter
  • Andrew H. PatersonEmail author
Original Paper


We present SSR-based genetic maps from a cross between Miscanthus sacchariflorus Robustus and M. sinensis, the progenitors of the promising cellulosic biofuel feedstock Miscanthus × giganteus. cDNA-derived SSR markers were mapped by the two-way pseudo-testcross model due to the high heterozygosity of each parental species. A total of 261 loci were mapped in M. sacchariflorus, spanning 40 linkage groups and 1,998.8 cM, covering an estimated 72.7% of the genome. For M. sinensis, a total of 303 loci were mapped, forming 23 linkage groups and 2,238.3 cM, covering 84.9% of the genome. The use of cDNA-derived SSR loci permitted alignment of the Miscanthus linkage groups to the sorghum chromosomes, revealing a whole genome duplication affecting the Miscanthus lineage after the divergence of subtribes Sorghinae and Saccharinae, as well as traces of the pan-cereal whole genome duplication. While the present maps provide for many early research needs in this emerging crop, additional markers are also needed to improve map density and to further characterize the structural changes of the Miscanthus genome since its divergence from sorghum and Saccharum.


Sorghum Sugarcane Basal Chromosome Number Sorghum Genome Sorghum Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the US Department of Energy-US Department of Agriculture Plant Feedstock Program (project grant number: 112786), the Consortium for Plant Biotechnology Research (CPBR), and Mendel Biotechnology.

Supplementary material

122_2012_1790_MOESM1_ESM.xls (3.3 mb)
Supplementary material 1 (XLS 3392 kb)


  1. Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–14Google Scholar
  2. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139PubMedGoogle Scholar
  3. Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208′. Genetics 134:1249–1260PubMedGoogle Scholar
  4. Atienza SG, Satovic Z, Peterson KK, Dolstra O (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952PubMedCrossRefGoogle Scholar
  5. Bethel CM, Sciara EB, Estill JC, Bowers JE, Hanna W, Paterson AH (2006) A framework linkage map of bermudagrass (Cynodon dactylon × transvaalensis) based on single-dose restriction fragments. Theor Appl Genet 112:727–737PubMedCrossRefGoogle Scholar
  6. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  7. Bowers JE, Abbey C, Anderson S et al (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedGoogle Scholar
  8. Cai Q, Aitken KS, Fan YH, Piperidis G, Jacson P, McIntyre CL (2005) A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Sci 169:946–984CrossRefGoogle Scholar
  9. Carr DE, Dudash MR (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Phil Trans R Soc Lond B 358:1071–1084CrossRefGoogle Scholar
  10. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedGoogle Scholar
  11. Chiang Y-C, Schaal BA, Chou C-H, Huang S, Chiang T-Y (2003) Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570PubMedCrossRefGoogle Scholar
  12. Chou C-H, Chiang Y-C, Chiang T-Y (1999) Within- and between-individual length hetero-geneity of the rDNA-IGS in Miscanthus sinensis var. glaber (Poaceae): phylogenetic analyses. Genome 42:1088–1093PubMedGoogle Scholar
  13. Chou C-H, Chiang Y-C, Chiang T-Y (2000) Genetic variability and phylogeography of Miscanthus sinensis var. condensatus, an apomictic grass, based on RAPD fingerprints. Can J Bot 78:1262–1268Google Scholar
  14. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019CrossRefGoogle Scholar
  15. Daniels J, Smith P, Panton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newsl 36:24–39Google Scholar
  16. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113PubMedCrossRefGoogle Scholar
  17. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedGoogle Scholar
  18. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  19. Greef JM, Deuter M, Jung C, Schondelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol 44:185–195CrossRefGoogle Scholar
  20. Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  21. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14:1–15CrossRefGoogle Scholar
  22. Hirayoshi I, Nishikawa K, Kubono M, Murase T (1957) Cyto-genetical studies on forage plants (VI) on the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ 8:8–13Google Scholar
  23. Hodkinson TR, Renvoize S (2001) Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull 56:759–760CrossRefGoogle Scholar
  24. Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392PubMedCrossRefGoogle Scholar
  25. Hodkinson TR, Chase MW, Renvoize SA (2002b) Characterization of genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636PubMedCrossRefGoogle Scholar
  26. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002c) The use of DNA sequencing (ITS and trnL-F) AFLP and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89(2):279–286PubMedCrossRefGoogle Scholar
  27. Hung K-H, Chiang T-Y, Chiu C-T, Hsu T-W, Ho C-W (2009) Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conserv Genet 10:1377–1380CrossRefGoogle Scholar
  28. Inoue M, Gao Z, Hirata M, Fujimori M, Cai H (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65PubMedCrossRefGoogle Scholar
  29. Iwata H, Kamijo T, Tsumura Y (2005) Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites. Ecol Res 20:233–238CrossRefGoogle Scholar
  30. Jordan SA, Humphries P (1994) Single nucleotide polymorphism in exon 2 of the BCP gene on 7q31–q35. Hum Mol Genet 3:1915PubMedCrossRefGoogle Scholar
  31. Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:20PubMedCrossRefGoogle Scholar
  32. Kim C, Tang H, Paterson AH (2009) Duplication and divergence of grass genomes: integrating the Chloridoids. Tropical Plant Biol 2:51–62CrossRefGoogle Scholar
  33. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  34. Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed 113:246–249CrossRefGoogle Scholar
  35. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  36. Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119:297–300CrossRefGoogle Scholar
  37. Ming R, Liu S-C, Lin T-R, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  38. Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110:1372–1383PubMedCrossRefGoogle Scholar
  39. Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity preferential pairing and multilocus interactions. Genetics 185:745–760PubMedCrossRefGoogle Scholar
  40. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedCrossRefGoogle Scholar
  41. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  42. Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280PubMedCrossRefGoogle Scholar
  43. Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188CrossRefGoogle Scholar
  44. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386Google Scholar
  45. Stein J, Pessino SC, Martinez EJ, Rodriguez MP, Siena LA, Quarin CL, Pablo J, Ortiz A (2007) A genetic map of tetraploid Paspalum nonatum Flugge (bahiagrass) based on single-dose molecular markers. Mol Breed 20:153–166CrossRefGoogle Scholar
  46. Venkateswarlu M, Raje Urs S, Surendra Nath B, Shashidhar HE, Maheswaran M, Veeraiah TM, Sabitha MG (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genet Genomes 3:15–24CrossRefGoogle Scholar
  47. Von Wuhlisch G, Deuter M, Muhs H-J (1994) Identifizierung verschiedener Miscanthus-Sorten mittels Isoenzymen. Agron Crop Sci 172:247–254CrossRefGoogle Scholar
  48. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  49. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946PubMedCrossRefGoogle Scholar
  50. Xue D, Feng S, Zhao H, Jiang H, Shen B, Shi N, Lu J, Liu J, Wang H (2010) The linkage maps of Dendrobium species based on RAPD and SRAP markers. J Genet Genomics 37:197–204PubMedCrossRefGoogle Scholar
  51. Yin T, Huang M, Wang M, Zhu L-H, Zeng Z-B, Wu R (2001) Preliminary interspecific genetic maps of the Populus genomes constructed from RAPD markers. Genome 44:602–609PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Changsoo Kim
    • 1
  • Dong Zhang
    • 1
  • Susan A. Auckland
    • 1
  • Lisa K. Rainville
    • 1
  • Katrin Jakob
    • 2
  • Brent Kronmiller
    • 2
  • Erik J. Sacks
    • 3
  • Martin Deuter
    • 4
  • Andrew H. Paterson
    • 1
    Email author
  1. 1.Plant Genome Mapping LaboratoryUniversity of GeorgiaAthensUSA
  2. 2.Mendel BiotechnologyHaywardUSA
  3. 3.Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.TinplantKlein WanzlebenGermany

Personalised recommendations