Skip to main content
Log in

Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addisu M, Snape JW, Simmonds JR, Gooding MJ (2009) Effects of reduced height (Rht) and photoperiod insensitivity (Ppd) alleles on yield of wheat in contrasting production systems. Euphytica 172:169–181

    Article  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Baga M, Fowler BD, Chibbar RN (2009) Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). J Exp Bot 60:3575–3585

    Article  PubMed  CAS  Google Scholar 

  • Balfourier F, Ravel C, Bochard AM, Exbrayat-Vinson F, Boutet G, Sourdille P, Dufour F, Charmet G (2006) Développement utilisation et comparaison de différents types de marqueurs pour étudier la diversité parmi une collection de blé tendre. Les Actes du BRG 6:129–144

    Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape J, Laurie D (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  PubMed  CAS  Google Scholar 

  • Bérard A, Le Paslier M, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374

    Article  PubMed  Google Scholar 

  • Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genetics 11:867–879

    Article  CAS  Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant M-R, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield and grain protein concentration in a winter wheat population segregating for flowering time QTL. J Exp Bot 62:3621–3636

    Article  PubMed  CAS  Google Scholar 

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    Article  PubMed  CAS  Google Scholar 

  • Bordes J, Branlard G, Oury FX, Charmet G, Balfourier F (2008) Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J Cereal Sci 48:569–579

    Article  CAS  Google Scholar 

  • Bordes J, Ravel C, Le Gouis J, Charmet G, Balfourier F (2011) Use of global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci. doi:10.1016/j.jcs.2011.03.004

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang ZC, Kroon D, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brooking IR, Jamieson PD (2002) Temperature and photoperiod response of vernalization in near-isogenic lines of wheat. Field Crop Res 79:21–38

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 235:714–718

    Article  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, Perretant M-R, Joseph J-L, Rakszegi M, Guillon F, Sado PE, Bedo Z, Saulnier L (2009) Genetics of dietary fibre in bread wheat. Euphytica 170:155–168

    Article  Google Scholar 

  • Crossa J, Burgueno J, Dreisickacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Debaeke P (2004) Scenario analysis for cereal management in water-limited conditions by the means of a crop simulation model (STICS). Agronomie 24:315–326

    Article  Google Scholar 

  • Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J (2009a) Genetic and molecular characterization of the VRN2 Loci in tetraploid wheat. Plant Physiol 149:245–257

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009b) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie D (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  PubMed  CAS  Google Scholar 

  • Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Gen Genomics 281:181–191

    Article  CAS  Google Scholar 

  • Fu D, Szücs P, Yan L, Helguera M, Skinner J, von Zitzewitz J, Hayes P, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273:54–65

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie S, Sutka J, Morgunov A, Snape J (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Gate P, Blondlot A, Gouache D, Deudon O, Vignier L (2008) Impacts of climate change on wheat growth in France. What solutions and actions to undertake? Oléagineux Corps gras Lipides 15:332–336

    Google Scholar 

  • Ge Y, Dudoit S, Speed TP (2003) Resampling-based multiple testing for micro-array data analysis. Test 12:1–44

    Article  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  PubMed  CAS  Google Scholar 

  • Halloran GM (1967) Gene dosage and vernalization response in homoeologous group 5 of Triticum aestivum. Genetics 57:401–407

    PubMed  CAS  Google Scholar 

  • Hanocq E, Sayers EJ, Niarquin M, Le Gouis J, Charmet G, Gervais L, Dedryver F, Duranton N, Marty N, Dufour P, Rousset M, Worland AJ (2003) A QTL analysis for earliness under field and controlled environment conditions in a bread wheat doubled-haploid population. In: Börner A, Snape J (eds), 12th International European Wheat Aneuploid Cooperative, Norwich, UK, pp 57–59

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé A-L, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in Bread Wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  PubMed  CAS  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065

    Article  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Horvath A, Didier A, Koenig J, Exbrayat F, Charmet G, Balfourier F (2009) Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor Appl Genet 119:1523–1537

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:1360–1385

    Article  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Kato K, Nakagawa K, Kuno H (1993) Chromosomal location of the vernalization response, Vrn2 and Vrn4, in common wheat, Triticum aestivum L. Wheat Inf Serv 76:53

    Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kato K, Yamashita M, Ishimoto K, Yoshino H, Fujita M (2003) Genetic analysis of two genes for vernalization response, the former Vrn2 and Vrn4, using PCR based molecular markers. In: Pogna NE, Romano N, Pogna EA, Galterio G (eds), 10th international wheat genetics symposium, Paestum, Italy, pp 971–973

  • Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analyses of some flowering time and adaptative traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) Genetic-control of ear-emergence time by chromosomes-5a and chromosomes-5D of wheat. Heredity 36:49–58

    Article  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of daylength response in wheat. Heredity 41:185–191

    Article  Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    Google Scholar 

  • Maystrenko OI (1980) Cytogenetic study of the growth habit and ear emergence time on chromosome 2B of wheat. In: Vartanian ME (ed) Well-being in mankind and genetics, 14th international congress of genetics, Vol 1, MIR Publishers, Moscow, pp 267–282

  • Miralles DJ, Slafer GA, Lynch V (1997) Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant Soil 197:79–86

    Article  CAS  Google Scholar 

  • Nemoto Y, Kisakal M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93

    Article  PubMed  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G (2006) Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet 112:738–743

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rhoné B, Vitalis R, Goldringer I, Bonnin I (2010) Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection. Evolution 64:2110–2125

    PubMed  Google Scholar 

  • Rousset M, Bonnin I, Remoué C, Falque M, Rhoné B, Veyrieiras J-B, Madur D, Balfourier F, Le Gouis J, Santoni S, Goldringer I (2011) Deciphering the genetics of growth habit by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet. doi:10.1007/s00122-011-1636-2

  • Santra D, Santra M, Allan RE, Campbell K, Kidwell K (2009) Genetic and molecular characterization of vernalisation genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest Region of the USA. Plant Breed 128:576–584

    Article  CAS  Google Scholar 

  • Schmidt RJ, Burr A, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960–963

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (2001) Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119:241–244

    Article  CAS  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Stelmakh A (1990) Geographic distribution of Vrn genes in landraces and improved varieties of spring bread wheat. Euphytica 45:113–118

    Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct Plant Biol 37:479–487

    Article  CAS  Google Scholar 

  • Trevaskis B, Hemming M, Dennis E, Peacock W (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Uwatoko N, Onishi A, Ikeda Y, Kontani M, Sasaki A, Matsubara K, Itoh Y, Sano Y (2008) Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod. Euphytica 163:167–175

    Article  CAS  Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:1–16

    Article  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis. II. Methods for discrete population genetic data. Sinauer Associates Inc, Sunderland, p 376

    Google Scholar 

  • Welsh JR, Keim DL, Pirasteh B, Richards RD (1973) Genetic control of photoperiod response in wheat. In: 4th international wheat genetics symposium, Missouri, pp 879–884

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Worland A (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 12:1640–1644

    Article  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    Article  PubMed  CAS  Google Scholar 

  • Youssefian S, Kirby EJM, Gale MD (1992) Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 1. Effects on development of the ear, stem and leaves. Field Crops Res 28:179–190

    Article  Google Scholar 

  • Zhang K, Tian J, Zhao L, Liu B, Chen G (2009) Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica 135:257–265

    Google Scholar 

  • Zheng S, Byrne P, Bai G, Shan X, Reid S, Haley S, Seabourn B (2009) Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. J Cereal Sci 50:283–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the experimental work carried out by Jean-Pierre Noclerq (INRA, Estrées-Mons). This work was partly supported by the “Agence Nationale de la Recherche” (ANR) Wheat Performance Project (ANR07-GPLA023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Le Gouis.

Additional information

Communicated by I. Mackay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gouis, J., Bordes, J., Ravel, C. et al. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124, 597–611 (2012). https://doi.org/10.1007/s00122-011-1732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1732-3

Keywords

Navigation