Advertisement

Theoretical and Applied Genetics

, Volume 124, Issue 2, pp 373–384 | Cite as

High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H

  • Fahimeh Shahinnia
  • Arnis Druka
  • Jerome Franckowiak
  • Michele Morgante
  • Robbie Waugh
  • Nils SteinEmail author
Original Paper

Abstract

Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC7F3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)–CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.

Keywords

Sorghum Cleave Amplify Polymorphic Sequence Internode Length Brachypodium Cleave Amplify Polymorphic Sequence Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge Mary Ziems, Corine Graser, Naser Poursarebani, Matthias Jost and Nikki Bonar for excellent technical assistance. The project was supported in frame of the ERA-PG project BARCODE by grants of SFC (Scotland), DFG (Germany) and MUR (Italy) to RW, NS and MM, respectively. The groups of RW, MM and NS collaborate for cereal mutant research in frame of COST action FA0604 Tritigen. We thank David Harrap of KWS-UK Ltd for making the mutant crosses employed here.

Supplementary material

122_2011_1712_MOESM1_ESM.pdf (37 kb)
Supplementary material 1 (PDF 37 kb)
122_2011_1712_MOESM2_ESM.xls (141 kb)
Supplementary material 2 (XLS 141 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Ayoub M, Symons SJ, Edney MJ, Mather DE (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247PubMedCrossRefGoogle Scholar
  3. Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 9:259–261PubMedCrossRefGoogle Scholar
  4. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78PubMedCrossRefGoogle Scholar
  5. Close TJ, Bhat PR, Lonardis S, Wu Y, Rostoks N et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  6. Davis MP, Franckowiak JD, Konishi T, Lundqvist U (eds) (1997) 1996 Special Issue. Barley Genet Newslett 26:1–533Google Scholar
  7. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627PubMedCrossRefGoogle Scholar
  8. Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas TBW (2007) The barley phytomer. Ann Bot 100:725–733PubMedCrossRefGoogle Scholar
  9. Franckowiak JD, Konishi T (1997) BGS 9, Dense spike 1, dsp1, revised. Barley Genet Newslett 26:53Google Scholar
  10. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  11. Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Dabing ZhangD (2010) The SEPALLATA-Like Gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740PubMedCrossRefGoogle Scholar
  12. Gottwald S, Stein N, Börner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436PubMedCrossRefGoogle Scholar
  13. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752PubMedCrossRefGoogle Scholar
  14. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li FuX (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497PubMedCrossRefGoogle Scholar
  15. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Jiayang L (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544PubMedCrossRefGoogle Scholar
  16. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373PubMedCrossRefGoogle Scholar
  17. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  19. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  20. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242PubMedCrossRefGoogle Scholar
  21. Malcomber STR, Preston JC, Heimer RT, Kossu TH, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot res 44:426–481CrossRefGoogle Scholar
  22. Mayer KFX, Martis M, Hedley P, Šimkova H, Liu H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCrossRefGoogle Scholar
  23. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  24. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495PubMedCrossRefGoogle Scholar
  25. Pellio B, Streng S, Bauer E, Stein N, Perovic D, Schiemann A, Friedt W, Ordon F, Graner A (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 110:283–293PubMedCrossRefGoogle Scholar
  26. Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopanke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4:74–83PubMedCrossRefGoogle Scholar
  27. Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice–barley micro collinearity by a transposition. Theor Appl Genet 114:1357–1365PubMedCrossRefGoogle Scholar
  28. Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122:1439–1449PubMedCrossRefGoogle Scholar
  29. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43(2):169–172. doi: 10.1038/ng.745 PubMedCrossRefGoogle Scholar
  30. Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913PubMedCrossRefGoogle Scholar
  31. Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103(2):110–117PubMedCrossRefGoogle Scholar
  32. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Meth 6:550–551CrossRefGoogle Scholar
  33. Shahinnia F, Rezai AM, Sayed-Tabatabaei BE (2005) Variation and path coefficient analysis of important agronomic traits in two- and six-rowed recombinant inbred lines of barley (Hordeum vulgare L.). Czech J Genet Plant Breed 41:246–250Google Scholar
  34. Shahinnia F, Sayed-Tabatabaei BE, Pourkheirandish M, Sato K, Komatsuda T (2009) Mapping of QTL for intermedium spike on barley chromosome 4H using EST-based markers. Breed Sci 59(4):383–390CrossRefGoogle Scholar
  35. Stein N, Graner A (2004) Map-based gene isolation in cereal genomes. In: Gupta PK, Varshney RK (eds) Cereal genomics, pp 331–360Google Scholar
  36. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356CrossRefGoogle Scholar
  37. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive bymovirus resistance in Hordeum vulgare (L.). The Plant J 42:912–922Google Scholar
  38. Stein N, Prasad M, Scholz U, Thiel T, Zhang H (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  39. Takahashi R (1972) Description of genetic stocks: BGS 0009 Dense spike. Barley Genet Newslett 2:174Google Scholar
  40. Taketa S, You T, Sakurai Y, Miyake S, Ichii M (2011) Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breed Sci 61:80–85CrossRefGoogle Scholar
  41. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:1–5CrossRefGoogle Scholar
  42. Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209PubMedCrossRefGoogle Scholar
  43. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  44. Vu GTH, Wicker T, Buchmann JP, Chandler PM, Matsumoto T, Graner A, Stein N (2010) Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Funct Integr Genomics 10(4):509–521PubMedCrossRefGoogle Scholar
  45. Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222PubMedCrossRefGoogle Scholar
  46. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedCrossRefGoogle Scholar
  47. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fahimeh Shahinnia
    • 1
    • 2
  • Arnis Druka
    • 3
  • Jerome Franckowiak
    • 4
  • Michele Morgante
    • 5
  • Robbie Waugh
    • 3
  • Nils Stein
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.National Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran
  3. 3.The James Hutton InstituteDundeeUK
  4. 4.Agric-Science Queensland, Department of EmploymentEconomic Development and Innovation, Hermitage Research StationWarwickAustralia
  5. 5.Dipartimento di Scienze Agrarie ed AmbientaliUniversità di UdineUdineItaly

Personalised recommendations