Skip to main content
Log in

Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Ahasl1 is a multilallelic locus where all the induced and natural mutations for herbicide tolerance were described thus far in sunflower (Helianthus annuus L.). The allele Ahasl1-1 confers moderate tolerance to imidazolinone (IMI), Ahasl1-2, and Ahasl1-3 provides high levels of tolerance solely to sulfonylurea (SU) and IMI, respectively. An Argentinean wild sunflower population showing plants with high level of tolerance to either an IMI and a SU herbicide was discovered and used to develop an inbred line designated RW-B. The objectives of this work were to determine the relative level and pattern of cross-tolerance to different AHAS-inhibiting herbicides, the mode of inheritance, and the molecular basis of herbicide tolerance in this line. Slight or no symptoms observed after application of different herbicides indicated that RW-B possesses a completely new pattern of tolerance to AHAS-inhibiting herbicides in sunflower. Biomass response to increasing doses of metsulfuron or imazapyr demonstrated a higher level of tolerance in RW-B with respect to Ahasl1-1/Ahasl1-1 and Ahasl1-2/Ahasl1-2 lines. On the basis of genetic analyses and cosegregation test, it was concluded that tolerance to imazapyr in the original population is inherited as a single, partially dominant nuclear gene and that this gene is controlling the tolerance to four different AHAS-inhibiting herbicides. Pseudo-allelism test permitted us to conclude that the tolerant allele present in RW-B is an allelic variant of Ahasl1-1 and was designated as Ahasl1-4. Nucleotide and deduced amino acid sequence indicated that the Ahasl1-4 allele sequence of RW-B has a leucine codon (TTG) at position 574 (relative to the Arabidopsis thaliana AHAS sequence), whereas the enzyme from susceptible lines has a tryptophan residue (TGG) at this position. The utilization of this new allele in the framework of weed control and crop rotation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Khatib K, Baumgartner JR, Peterson DE, Currie RS (1998) Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46:403–407

    CAS  Google Scholar 

  • Baumgartner JR, Al-Khatib K, Currie RS (1999a) Cross-resistance of imazethapyr-resistant common sunflower (Helianthus annuus) to selected imidazolinone, sulfonylurea, and triazolopyrimidines herbicides. Weed Technol 13:489–493

    CAS  Google Scholar 

  • Baumgartner JR, Al-Khatib K, Currie RS (1999b) Survey of common sunflower (H annuus) resistance to ALS-inhibiting herbicides in northeast Kansas. Weed Technol 13:510–514

    CAS  Google Scholar 

  • Bernasconi P, Woodworth AR, Rosen BA, Subramanian MV, Siehl DL (1995) A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J Biol Chem 270:17381–17385

    Article  PubMed  CAS  Google Scholar 

  • Bruniard JM, Miller JF (2001) Inheritance of imidazolinone herbicide resistance in sunflower. Helia 24:11–16

    Google Scholar 

  • Canadian Food Inspection Agency (2008) Determination of the Safety of Pioneer Hi-Bred Production Ltd.’s Sulfonylurea-Tolerant ExpressSun™ Sunflower (Helianthus annuus L.) SU7. Decision Document DD2008-69. http://www.inspection.gc.ca/english/plaveg/bio/dd/dd0869e.shtml. Accessed 15 July 2011

  • Cantamutto M, Presotto A, Fernandez Moroni I, Alvarez D, Poverene M, Seiler G (2010) High infraspecific diversity of wild sunflowers (Helianthus annuus L.) naturally developed in central Argentina. Flora 205:306–312

    Article  Google Scholar 

  • Chaleff RS, Ray TB (1984) Herbicide resistant mutants from tobacco culture. Science 223:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Christoffers MJ, Nandula VK, Howatt KA, Wehking TR (2006) Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci 54:191–197

    CAS  Google Scholar 

  • Gabard JM (2004) Sulfonylurea-tolerant sunflower plants. United States Patent Application 20050044587, filled 2004

  • Grula JW (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol 28:837–846

    Google Scholar 

  • Hanson BD, Park KW, Mallory-Smith CA, Thill DC (2004) Resistance of Camelina microcarpa to acetolacate synthase inhibiting herbicides. Weed Res 44:187–194

    Article  CAS  Google Scholar 

  • Hawley RM (2005) The acetohydroxyacid synthase gene family its role in herbicide resistant sunflowers. M.Sc Thesis, Oregon State University. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/15488/HawleyRobinM2005.pdf?sequence=1. Accessed 15 July 2011

  • Howatt KA, Endres GJ (2006) Herbicide-resistant sunflower (Helianthus annuus) response to soil residues of ALS-inhibiting herbicides. Weed Technol 20:67–73

    Article  CAS  Google Scholar 

  • Jander G, Baerson SR, Hudak SR, Gonzalez KA, Gruys KJ, Last RL (2003) Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139–146

    Article  PubMed  CAS  Google Scholar 

  • Kolkman JM, Slabaugh MB, Bruniard JM, Berry S, Bushman BS, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Kozik A, Michelmore RW, Knapp SJ et al (2002) Lettuce and sunflower ESTs from the compositae genome project. http://www.cgpdb.ucdavis.edu/. Accessed 15 May 2011

  • Lamego FP, Charlson D, Delatorre CA, Burgos NR, Vidal RA (2009) Molecular basis of resistance to ALS-inhibitor herbicides in greater beggarticks. Weed Sci 57:474–481

    Article  CAS  Google Scholar 

  • McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. PNAS 103:569–573

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Al-Khatib K (2002) Registration of imidazolinone herbicide-resistant sunflower maintainer (HA425) and fertility restorer (RHA426 and RHA427) germplasms. Crop Sci 42:988–989

    Article  Google Scholar 

  • Miller JF, Al-Khatib K (2004) Registration of two oilseed sunflower genetic stocks, SURES-1 and SURES-2, resistant to tribenuron herbicide. Crop Sci 44:1037–1038

    Article  Google Scholar 

  • Miller JF, Seiler GJ (2005) Tribenuron resistance in accessions of wild sunflower collected in Canada. Proceedings Sunflower Research Workshop. http://sunflowernsa.com/research/research-workshop/documents/Miller_Tribenuron_05.pdf. Accessed 15 July 2011

  • Moshe S, Baruch R (2003) Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta 216:1022–1027

    Google Scholar 

  • Newhouse K, Singh BK, Shaner DL, Stidham M (1991) Mutations in corn (Zea mays L.) conferring resistance to imidazolinones. Theor Appl Genet 83:65–70

    Article  CAS  Google Scholar 

  • Olson BL, Al-Khatib K, Aiken RM (2004) Distribution of resistance to imazamox and tribenuron-methyl in native sunflower. Proceedings Sunflower Research Workshop. http://www.sunflowernsa.com/research/research-workshop/documents/158.pdf. Accessed 15 July 2011

  • Ouellet T, Rutledge RG, Miki BL (1992) Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J 2:321–330

    Google Scholar 

  • Poverene M, Carrera A, Ureta S, Cantamutto M (2004) Wild Helianthus species and wild-sunflower hybridization in Argentina. Helia 27:133–141

    Article  Google Scholar 

  • Poverene M, Cantamutto M, Seiler GJ (2009) Ecological characterization of wild Helianthus annuus and Helianthus petiolaris germplasm in Argentina. Plant Genet Resour 7:42–49

    Article  Google Scholar 

  • Pozniak CJ, Hucl PJ (2004) Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci 44:23–30

    Article  CAS  Google Scholar 

  • Preston C, Mallory-Smith CA (2001) Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. In: Powles SB, Shaner DL (eds) Herbicide resistance and world grains. CRC Press, Boca Raton, pp 23–60

    Google Scholar 

  • Sala CA, Echarte AM, Rodríguez RH (1990) Una nueva especie de Helianthus para la flora Argentina. Darwiniana 30:1–3

    Google Scholar 

  • Sala CA, Bulos M, Echarte AM (2008a) Genetic analysis of an induced mutation conferring imidazolinone resistance in sunflower. Crop Sci 48:1817–1822

    Article  CAS  Google Scholar 

  • Sala CA, Bulos M, Echarte AM, Whitt SR, Ascenzi R (2008b) Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet 108:105–112

    Google Scholar 

  • Sala CA, Bulos M, Echarte AM, Whitt S, Budziszewski G, Howie W, Singh BK, Weston B (2008c) Development of CLHA-Plus: a novel herbicide tolerance trait in sunflower conferring superior imidazolinone tolerance and ease of breeding. Proc. XVII Int. Sunflower Conf., Córdoba, España

  • Sala CA, Bulos M, Altieri E, Ramos ML (2011) Sunflower: improving crop productivity and abiotic stress tolerance. In: Tuteja N, Gill S, Tubercio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-Blackwell Wiley-VCH Verlag GmbH & Co., Germany (in press)

    Google Scholar 

  • Sathasivan K, Haughn GW, Murai N (1991) Molecular basis of imidazolinone herbicide resistance in Aradidopsis thaliana var Columbia. Plant Physiol 97:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Scarabel L, Locascio A, Furini A, Sattin M, Varotto S (2010) Characterization of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management. Pest Man Sci 66:337–344

    Article  CAS  Google Scholar 

  • Schneiter AA, Miller JF (1981) Description of sunflower growth stages. Crop Sci 21:901–903

    Article  Google Scholar 

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose response relationships. Weed Technol 9:218–227

    Google Scholar 

  • Singh BK (1999) Biosynthesis of valine, leucine and isoleucine. In: Singh BK (ed) Plant amino acids. Marcel Dekker Inc, New York, pp 227–247

    Google Scholar 

  • Statistical Analysis Systems (2004) SAS user’s guide. Version 8.2. SAS, Cary

  • Swanson EB, Hergesell MJ, Arnoldo M, Sippell DW, Wong RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to imidazolinones. Theor Appl Genet 78:525–530

    Article  CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Article  PubMed  CAS  Google Scholar 

  • Tranel PJ, Wright TR (2002) Resistance of weeds to AHAS inhibiting herbicides: what have we learned? Weed Sci 50:700–712

    Article  CAS  Google Scholar 

  • Tranel PJ, Wright TR, Heap IM (2011) ALS mutations from herbicide-resistant weeds. http://www.weedscience.org/mutations/MutDisplay.aspx. Accessed 02 May 2011

  • Ureta S, Carrera A, Cantamutto M, Poverene M (2008) Gene flow among wild and cultivated sunflower Helianthus annuus in Argentina. Agric Ecosyst Environ 123:343–349

    Article  Google Scholar 

  • White AD, Owen MD, Hartzler RG, Cardina J (2002) Common sunflower resistance to acetolactate-inhibiting herbicides. Weed Sci 50:432–437

    Article  CAS  Google Scholar 

  • Zelaya IA, Owen MD (2004) Evolved resistance to acetolactate synthase-inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci 52:538–548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the staff of the Biotechnology Department, Nidera S.A., for their continued dedication and effort. This work is dedicated to the memory of Francisco Firpo, Director of Nidera S.A., for his vision, encouragement, and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Sala.

Additional information

Communicated by A. Bervillé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, C.A., Bulos, M. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theor Appl Genet 124, 355–364 (2012). https://doi.org/10.1007/s00122-011-1710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1710-9

Keywords

Navigation