Skip to main content
Log in

The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Changes in water potential, growth elongation, photosynthesis of three-leaf-old seedlings of maize inbred line YQ7-96 under water deficit (WD) for 0.5, 1 and 2 h and re-watering (RW) for 24 h were characterized. Gene expression was analyzed using cDNA microarray covering 11,855 maize unigenes. As for whole maize plant, the expression of WD-regulated genes was characterized by up-regulation. The expression of WD-regulated genes was categorized into eight different patterns, respectively, in leaves and roots. Newly found and WD-affected cellular processes were metabolic process, amino acid and derivative metabolic process and cell death. A great number of the analyzed genes were found to be regulated specifically by RW and commonly by both WD and RW, respectively, in leaves. It is therefore concluded that (1) whole maize plant tolerance to WD, as well as growth recovery from WD, depends at least in part on transcriptional coordination between leaves and roots; (2) WD exerts effects on the maize, especially on basal metabolism; (3) WD could probably affect CO2 uptake and partitioning, and transport of fixed carbons; (4) WD could likely influence nuclear activity and genome stability; and (5) maize growth recovery from WD is likely involved in some specific signaling pathways related to RW-specific responsive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASI:

Anthesis-silking interval

CC:

CO2 concentration

Down:

Down-regulated

ER:

Early response

EST:

Expressed sequence tag

GO:

Gene ontology

H:

Hour

LR:

Late response

nARVOL:

Normalized artifact removed volume

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

PR:

Photosynthetic rate

qRT-PCR:

Quantitative real-time PCR

RW:

Re-watering

SC:

Stomatal conductance

TR:

Transpiration rate

Up:

Up-regulated

WD:

Water deficit

WP:

Water potential

References

  • Bahrun A, Jensen CR, Asch F, Mogensen VO (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot 53:251–263

    Article  PubMed  CAS  Google Scholar 

  • Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, Zhou GS (2006) Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16:326–332

    Article  CAS  Google Scholar 

  • Bassani M, Neumann PM, Gepstein S (2004) Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Mol Biol 56:367–380

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  • Bolaños J, Edmeades GO (1996) The importance of the anthesis silking interval in breeding for drought tolerance in tropical maize. Field Crops Research 48:65–80

    Article  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot (Lond) 89:803–811

    Article  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Bressan R, Bohnert H, Zhu JK (2009) Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2:1–2

    Article  PubMed  CAS  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  PubMed  CAS  Google Scholar 

  • Camacho RG, Caraballo DF (1994) Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Sci Agric (Piracicaba, Braz.) 51:453–458

    Article  Google Scholar 

  • Camon E, Barrell D, Lee V, Dimmer E, Apweiler R (2004) The Gene Ontology Annotation (GOA) Database–an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol 4:5–6

    PubMed  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Dong Q, Roy L, Freeling M, Walbot V, Brendel V (2003) ZmDB, an integrated database for maize genome research. Nucleic Acids Res 31:244–247

    Article  PubMed  CAS  Google Scholar 

  • Eveland AL, McCarty DR, Koch KE (2008) Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol 146:32–44

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Arbinger B, Kammerer B, Busch C, Brink S, Wallmeier H, Sauer N, Eckerskorn C, Flugge UI (1994) Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J 5:215–226

    Article  PubMed  CAS  Google Scholar 

  • Guo QF, Wang QC, Wang LM (2004) Chinese Maize Cultivation. Shanghai Science and Technology Press, Shanghai, pp 117–167 (in Chinese)

    Google Scholar 

  • Harrigan GG, Stork LG, Riordan SG, Ridley WP, Macisaac S, Halls SC, Orth R, Rau D, Smith RG, Wen L, Brown WE, Riley R, Sun D, Modiano S, Pester T, Lund A, Nelson D (2007) Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J Agric Food Chem 55:6169–6176

    Article  PubMed  CAS  Google Scholar 

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R; Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258–261

  • Hoagland DR, Arnon DA (1938) The water-culture method of growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    CAS  Google Scholar 

  • Hohl M, Peter S (1991) Water relations of growing maize coleoptiles: Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol 95:716–722

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J 48:710–727

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Goodier JL (2002) LINE Drive: retrotransposition and genome instability. Cell 10:277–280

    Article  Google Scholar 

  • Keller CP, Stahlberg R, Barkawi LS, Cohen JD (2004) Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 134:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves stomata versus metabolism and the role of ATP. Ann Bot 89:871–885

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses, vol. 2. Water, radiation, salt and other stresses. Academic Press, New York, pp 93–128

    Google Scholar 

  • Li Y, Sun C, Huang Z, Pan J, Wang L, Fan X (2009) Mechanisms of progressive water deficit tolerance and growth recovery of Chinese maize foundation genotypes of Huangzao 4 and Chang 7–2, which are proposed on the basis of comparison of physiological and transcriptomic responses. Plant Cell Physiol 50:2092–2111

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952

    Article  CAS  Google Scholar 

  • Matsuoka M, Ozeki Y, Yamamoto N, Hirano H, Kano-Murakami Y, Tanaka Y (1988) Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. J Biol Chem 263:11080–11083

    PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14:110–117

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Poroyko V, Hejlek LG, Spollen WG, Springer GK, Nguyen HT, Sharp RE, Bohnert HJ (2005) The maize root transcriptome by serial analysis of gene expression. Plant Physiol 138:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Pounds S, Cheng C (2006) Robust estimation of the false discovery rate. Bioinformatics 22:1979–1987

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  PubMed  CAS  Google Scholar 

  • Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ (2009) Comparative profiles of gene expression in leaves and roots of maize seedlings under the conditions of the salt stress and the removal of the salt stress. Plant Cell Physiol 50:889–903

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Spollen WG, Tao W, Valliyodan B, Chen K, Hejlek LG, Kim JJ, Lenoble ME, Zhu J, Bohnert HJ, Henderson D, Schachtman DP, Davis GE, Springer GK, Sharp RE, Nguyen HT (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol 8:32

    Article  PubMed  Google Scholar 

  • Sun Y, Helentjaris T, Zinselmeier C, Habben JE (2001) Utilizing gene expression profiles to investigate maize response to drought stress. In: 1999 Proceedings of the 54th Annual Corn and Sorghum Research Conference

  • Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285

    Article  PubMed  CAS  Google Scholar 

  • van den Berg L, Zeng YJ (2006) Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. S Afr J Bot 72:284–286

    Article  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S, Hendrickson L, Quinn V, Vella N, Millgate AG, Furbank RT (2005) Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. Plant Physiol 137:747–755

    Article  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Wu Y, Thorne ET, Sharp RE, Cosgrove DJ (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Yeung KY, Ruzzo WL (2001) Principle component analysis for clustering gene expression data. Bioinformatics 17:763–774

    Article  PubMed  CAS  Google Scholar 

  • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977–987

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131:568–582

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55:807–823

    PubMed  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G, Zhu Y, Zhang J (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26:2137–2247

    Article  PubMed  CAS  Google Scholar 

  • Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H, Habben JZ (2002) The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crop Res 75:111–121

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China No. 2011CB100100, the 948 Program from the Ministry of Agriculture of China (2001-205), the Development Program for Guangxi Science and Technology Research (Guikegong 0228019-6), grants from Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization (SB0803) and the Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering (Director’s grant-06-11). We heartily thank Professor Hans J. Bohnert for suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Zhi Li.

Additional information

Communicated by F. Hochholdinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Functional annotation and categorization of 11,855 arrayed genes (XLS 2871 kb)

Table S2 Primers used in qRT-PCR (DOC 59 kb)

Table S3 Information on mapping of EST onto maize chromosomes (XLS 10594 kb)

122_2011_1638_MOESM4_ESM.xls

Table S4 Information on CyberT as well as relative expression folds of a total of 11,855 arrayed genes under WD and RW (XLS 10227 kb)

Table S5 Q values of expression of arrayed genes (XLS 15454 kb)

Table S6 Information on all WD- and RW-regulated genes (XLS 7665 kb)

Table S7 Expression of some interested regulated genes (XLS 9995 kb)

Table S8 WD-regulated genes in each expression pattern (XLS 1783 kb)

122_2011_1638_MOESM9_ESM.ppt

Fig. S1 Comparison between gene expression data from qRT-PCR and microarray analyses. The microarray data at each time point were reported with a mean value of ln nARVOLs from 4-spot data. The qRT-PCR data were presented as the mean values of three repeats. RW treatment was conducted after a 2-h WD treatment. RW, re-watering; WD, water deficit. (PPT 371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, HF., Dong, HT., Sun, CB. et al. The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering. Theor Appl Genet 123, 943–958 (2011). https://doi.org/10.1007/s00122-011-1638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1638-0

Keywords

Navigation