Theoretical and Applied Genetics

, Volume 123, Issue 3, pp 383–396 | Cite as

Mapping and characterization of Rf 5 : a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench)

  • D. R. JordanEmail author
  • R. R. Klein
  • K. G. Sakrewski
  • R. G. Henzell
  • P. E. Klein
  • E. S. Mace
Original Paper


With an aim to further characterize the cytoplasmic male sterility–fertility restoration system in sorghum, a major fertility restoration gene was mapped along with a second locus capable of partial restoration of pollen fertility. The major fertility restoration gene, Rf 5 , was located on sorghum chromosome SBI-05, and was capable of restoring pollen fertility in both A1 and A2 male sterile cytoplasms. Depending on the restorer parent, mapping populations exhibited fertility restoration phenotypes that ranged from nearly bimodal distribution due to the action of Rf 5 , to a more normalized distribution reflecting the action of Rf 5 and additional modifier/partial restoration genes. A second fertility restoration locus capable of partially restoring pollen fertility in A1 cytoplasm was localized to chromosome SBI-04. Unlike Rf 5 , this modifier/partial restorer gene acting alone resulted in less than 10% seed set in both A1 and A2 cytoplasms, and modified the extent of restoration conditioned by the major restorer Rf 5 in A1 cytoplasm. In examining the genomic regions spanning the Rf 5 locus, a cluster of pentatricopeptide gene family members with high homology to rice Rf 1 and sorghum Rf 2 were identified as potential candidates encoding Rf 5 .


Sorghum Fertility Restoration Restorer Gene Southern Corn Leaf Blight Fertility Restoration Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Julie McCollum for her expert technical assistance. We thank the Australian Grains Research and Development Corporation (GRDC; for part of the financial support for this research, and the USDA-Agricultural Research Service for financial support to RRK.

Supplementary material

122_2011_1591_MOESM1_ESM.xls (26 kb)
Supplementary Table S1 (XLS 26 kb)
122_2011_1591_MOESM2_ESM.ppt (802 kb)
Supplementary Figure (PPT 802 kb)
122_2011_1591_MOESM3_ESM.ppt (648 kb)
Supplementary Figure (PPT 648 kb)
122_2011_1591_MOESM4_ESM.ppt (825 kb)
Supplementary Figure (PPT 825 kb)
122_2011_1591_MOESM5_ESM.ppt (414 kb)
Supplementary Figure (PPT 413 kb)


  1. Ahnert D, Lee M, Austin DF, Livini C, Woodman WL, Openshaw SJ, Smith JSC, Porter K, Dalton G (1996) Genetic diversity among elite sorghum inbred lines assessed with DNA markers and pedigree information. Crop Sci 36:1385–1392CrossRefGoogle Scholar
  2. Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892. doi: 101073/pnas102301599 PubMedCrossRefGoogle Scholar
  3. Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang JF, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272. doi: 101046/j1365-313X200301799x PubMedCrossRefGoogle Scholar
  4. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  5. Cui XQ, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336PubMedCrossRefGoogle Scholar
  6. Dahlberg JA, Madera-Torres P (1997) Restorer reaction in A1 (ATx623), A2 (A2Tx632), and A3 (A3SC103) cytoplasms to selected accessions from the Sudan sorghum collection. Int Sorghum Millet Newsl 38:43–58Google Scholar
  7. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7.
  8. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucl Acids Res 36:W5–W9. doi: 101093/nar/gkn201 PubMedCrossRefGoogle Scholar
  9. Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 120(7):1279–1287PubMedCrossRefGoogle Scholar
  10. Kato H, Tezuka K, Feng YY, Kawamoto T, Takahashi H, Mori K, Akagi H (2007) Structural diversity and evolution of the Rf-1 locus in the genus Oryza. Heredity 99:516–524. doi: 101038/sjhdy6801026 PubMedCrossRefGoogle Scholar
  11. Klein RR, Klein PE, Mullet J, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012PubMedCrossRefGoogle Scholar
  12. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 136:1447–1455Google Scholar
  13. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Matrin-Magnietee M-L, Mireau H, Peeters N, Renou J-P, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103PubMedCrossRefGoogle Scholar
  14. Mace ES, Jordan DR (2010) Location of major effect genes in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 121:1339–1356PubMedCrossRefGoogle Scholar
  15. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26. doi: 26101186/1471-2164-9-26 PubMedCrossRefGoogle Scholar
  16. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedCrossRefGoogle Scholar
  17. Maunder AB, Pickett RC (1959) The genetic inheritance of cytoplasmic-genetic male sterility in grain sorghum. Agron J 51:47–49CrossRefGoogle Scholar
  18. Menz MA, Unruh NC, Klein PE, Mullet JE, Rooney WL, Klein RR (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44:1236–1244CrossRefGoogle Scholar
  19. Miller DA, Pickett RC (1964) Inheritance of partial male-fertility in Sorghum vulgare Pers. Crop Sci 4:1–4CrossRefGoogle Scholar
  20. Moran JL, Rooney WL (2003) Effect of cytoplasm on the agronomic performance of grain sorghum hybrids. Crop Sci 43:777–781CrossRefGoogle Scholar
  21. Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382PubMedCrossRefGoogle Scholar
  22. Reddy BVS, Ramesh S, Reddy PS, Ramaiah B (2007) Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 154:153–164. doi: 101007/s10681-006-9281-6 CrossRefGoogle Scholar
  23. Schertz KF (1983) Potentials with new cytoplasmic male sterility systems in sorghum. Proc Genet Soc USA 38:1–10Google Scholar
  24. Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670PubMedCrossRefGoogle Scholar
  25. Stephens JC, Holland RF (1954) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron J 46:20–23CrossRefGoogle Scholar
  26. Tang HV, Chang RY, Pring DR (1998) Cosegregation of single genes associated with fertility restoration and transcript processing of sorghum mitochondrial orf107 and urf209. Genetics 150:383–391PubMedGoogle Scholar
  27. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  28. Ullstrup AJ (1972) The impacts of southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10:37–50CrossRefGoogle Scholar
  29. Wang S, Basten C, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgenncsuedu/qtlcart/WQTLCarthtm
  30. Xu XB, Liu ZX, Zhang DF, Liu Y, Song WB, Li JS, Dai JR (2009) Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize. Plant Mol Biol Rep 27:511–517. doi: 101007/s11105-009-0105-4 CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Australia as represented by The State of Queensland 2011

Authors and Affiliations

  • D. R. Jordan
    • 1
    • 2
    Email author
  • R. R. Klein
    • 3
  • K. G. Sakrewski
    • 1
  • R. G. Henzell
    • 1
  • P. E. Klein
    • 4
  • E. S. Mace
    • 1
  1. 1.Agri-Science Queensland, Hermitage Research StationWarwickAustralia
  2. 2.Queensland Alliance for Agriculture and Food InnovationWarwickAustralia
  3. 3.USDA-ARS, Southern Plains Agricultural Research CenterCollege StationUSA
  4. 4.Department of Horticulture and Institute for Plant Genomics and BiotechnologyTexas A&M UniversityCollege StationUSA

Personalised recommendations