Skip to main content

Wild sorghum from different eco-geographic regions of Kenya display a mixed mating system

Abstract

Knowledge of mating systems is required in order to understand the genetic composition and evolutionary potential of plant populations. Outcrossing in a population may co-vary with the ecological and historical factors influencing it. However, literature on the outcrossing rate is limited in terms of wild sorghum species coverage and eco-geographic reference. This study investigated the outcrossing rates in wild sorghum populations from different ecological conditions of Kenya. Twelve wild sorghum populations were collected in four sorghum growing regions. Twenty-four individuals per population were genotyped using six polymorphic simple sequence repeat (SSR) markers to compute their indirect equilibrium estimates of outcrossing rate as well as population structure. In addition, the 12 populations were planted in a field in a randomised block design with five replications. Their progeny (250 individuals per population) were genotyped with the six SSR markers to estimate multi-locus outcrossing rates. Equilibrium estimates of outcrossing rates ranged from 7.0 to 75.0%, while multi-locus outcrossing rates (t m) ranged from 8.9 to 70.0% with a mean of 49.7%, indicating that wild sorghum exhibits a mixed mating system. The wide range of estimated outcrossing rates in wild sorghum populations indicate that environmental conditions may exist under which fitness is favoured by outcrossing and others under which selfing is more advantageous. The genetic structure of the populations studied is concordant with that expected for a species displaying mixed mating system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the out crossing rate of barley landraces and wild barley population collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    Article  PubMed  Google Scholar 

  • Allard RW (1975) The mating system and microevolution. Genetics 79:115–126

    PubMed  Google Scholar 

  • Barnaud A, Trigueros G, McKey D, Joly HI (2008) High outcrossing rates in fields with mixed sorghum landraces: how are landraces maintained? Heredity 101:445–452

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Université de Montpellier II; Montpellier, France: 1996–2004. Genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171

  • Booy GR, Hendricks JJ, Smulders MJM, Van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Brown AHD, Allard RW (1970) Estimation of the mating system in open-pollinated maize populations using isozyme polymorphism. Genetics 66:133–145

    PubMed  CAS  Google Scholar 

  • Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzales-Candelas F, Kresovich S (1996) Multiple methods for identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 93:190–198

    Article  CAS  Google Scholar 

  • Coates DJ, Sampson JF, Yates CJ (2007) Plant mating systems and assessing population persistence in fragmented landscapes. Aust J Bot 55:239–249

    Article  Google Scholar 

  • Cruden RW, Lyon DL (1989) Facultative xenogamy: examination of a mixed mating system. In: Bock JH, Linhart YB (eds) The evolutionary ecology of plants. Westview, Boulder, pp 171–207

    Google Scholar 

  • De Wet JMJ (1978) Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). Am J Bot 65:477–484

    Article  Google Scholar 

  • Demotes-Mainard S, Doussinault G, Meynard JM (1995) Effect of low radiation and low temperature at meiosis on pollen viability and grain set in wheat. Agronomie 15:357–365

    Article  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to Crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  PubMed  Google Scholar 

  • Dje′ Y, Heuertz M, Ater M, Lefebvre C, Vekemans X (2004) In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212

    Article  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman, London

    Google Scholar 

  • Ellstrand NC, Foster KW (1983) Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet 66:323–327

    Article  Google Scholar 

  • Garber RJ, Antwood SS (1945) Natural crossing in sudan grass. J Am Soc Agron 37:365–369

    Google Scholar 

  • Goodwillie C (1999) Multiple origins of self-compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal-transcribed-spacer sequence data. Evolution 53:1387–1395

    Article  Google Scholar 

  • Hogg PG, Ahlgren HL (1943) Environmental, breeding, and inheritance studies of hydrocyanic acis in sorghum vulgare var. Susanese. J Agric Res 67:195–210

    CAS  Google Scholar 

  • Jain SK (1976) The evolution of inbreeding in plants. Annu Rev Ecol Syst 7:469–495

    Article  Google Scholar 

  • Jarne P, Auld JR (2006) Animal mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60:1816–1824

    PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–240

    Article  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Leblanc O, Peel MD, Carman JG, Savidan Y (1995) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63

    Article  Google Scholar 

  • Li HB, Zhang Q, Liu AM, Zou JS, Chen JS (1996) A genetic analysis of low-temperature-sensitive sterility in indica-japonica rice hybrids. Plant Breed 115:305–309

    Article  Google Scholar 

  • Mace ES, Buhariwalla HK, Crouch JH (2003) A high throughput DNA extraction protocol for molecular breeding programs. Plant Mol Biol Report 21:459a–459h

    Article  Google Scholar 

  • Masuda M, Yahara T, Maki M (2004) Evolution of floral dimorphism in a cleistogamous annual, Impatiens noli-tangere L. occurring under different environmental conditions. Ecol Res 19:571–580

    Article  Google Scholar 

  • Muraya MM, Hartwig HH, Mutegi E, Kanyenji BM, Sagnard F, de Villiers S, Kiambi D, Heiko K, Parzies HK (2010) Geographical patterns of phenotypic diversity and structure of Kenyan wild sorghum populations (Sorghum spp) as an aid to germplasm collection and conservation strategy. Plant Genet Resour 8:217–224

    Article  Google Scholar 

  • Mutegi E, Sagnard F, Muraya M, Kanyenji B, Rono B, Mwongera C, Marangu C, Kamau J, Parzies H, de Villiers S, Semagn K, Traoré PS, Labuschagne M (2010) Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor in Kenya: implications for conservation and crop-to-wild gene flow. Genet Resour Crop Evol 57:243–253

    Article  Google Scholar 

  • Neel MC, Ross-Ibarra J, Ellstrand NC (2001) Implications of mating patterns for conservation of the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Am J Bot 88:1214–1222

    Article  PubMed  Google Scholar 

  • Ollitrault P, Noyer JL, Chantereau J, Glaszmann JC (1997) Structure génétiques et dynamique des variétés traditionnelles de sorgho au Burkina-Faso. In: Begic A (ed) Gestion des ressources génétiques des plantes en Afrique des savanes. IER-BRG Solagral, Bamako, pp 231–240

    Google Scholar 

  • Pedersen JF, Toy JJ, Johnson B (1998) Natural outcrossing of sorghum and sundangrass in the central great plains. Crop Sci 38:937–939

    Article  Google Scholar 

  • Porcher E, Lande R (2005) Loss of gametophytic self-incompatibility with evolution of inbreeding depression. Evolution 59:46–60

    PubMed  Google Scholar 

  • Rabbi IY, Parzies HK, Kiambi D, Haussmann BIG, Folkertsma R, Geiger HH (2010) Experimental studies on pollen-mediated gene flow in Sorghum bicolor (L.) Moench using malesterile bait plants. Plant Breeding. doi:10.1111/j.1439-0523.2010.01775.x

  • Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229

    Article  Google Scholar 

  • Ritland K (1986) Joint maximum likelihood estimation of genetic and mating structure using open-pollinated progenies. Biometrics 42:25–43

    Article  Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859

    Article  Google Scholar 

  • Ritland K (2002) Extension of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Ritland K, Jain SK (1981) A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47:35–52

    Article  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Nat Acad Sci 104:8641–8648

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2004) The SAS system for windows, version 9.1. The SAS Institute, Cary

    Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor(L.) Moench. Theor Appl Genet 105:912–920

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Whole and partflower self-pollination in Glycine clandestine and G. argyrea and the evolution of autogamy. Evolution 45:1651–1664

    Article  Google Scholar 

  • Schoen DJ, Lloyd DG (1984) The selection of cleistogamy and heteromorphic diaspores. Biol J Linn Soc 23:303–322

    Article  Google Scholar 

  • Schoen DJ, Johnston MO, L’Heureux AM, Marsolais JV (1997) Evolutionary history of the mating system in Amsinckia (boraginaceae). Evolution 51:1090–1099

    Article  Google Scholar 

  • Stone JL (2002) Molecular mechanisms underlying the breakdown of gametophytic selfincompatibility. Q Rev Biol 77:17–32

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2006) Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Version 4.0 (Beta release) Center for Evolutionary Functional Genomics Bio design Institute, Arizona State University

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe` ME (1997) Characterisation and mapping of simple sequence repeats (SSR) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Tesso T, Kapran I, Grenier C, Snow A, Sweeney P, Pedersen J, Marx D, Bothma G, Ejeta G (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431

    Article  Google Scholar 

  • Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83:940–946

    Article  Google Scholar 

  • Vallejo-Marin M, Uyenoyama MK (2004) On the evolutionary costs of self-incompatibility: incomplete reproductive compensation due to pollen limitation. Evolution 58:1924–1935

    PubMed  Google Scholar 

  • Weekley CW, Brothers A (2006) Failure of reproductive assurance in the chasmogamous flowers of Polygala lewtonii (Polygalaceae), an endangered sandhill herb. Am J Bot 93:245–253

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

Download references

Acknowledgments

This study was funded by the United States Agency for International Development (USAID) Biotechnology and Biodversity Interface Program (BBI; Dr. Fabrice Sagnard), the Institute of plant Breeding and Population Genetics at the University of Hohenheim, Germany, and Germany Academic Exchange Service (DAAD: A0523923). USAID-BBI funded field experiments and collection trips. University of Hohenheim, Institute of plant Breeding Seed Science, and Population Genetics, Germany, provided laboratory infrastructure and consumables for genotyping work. We are grateful to Kenya Agricultural Research Institute and Ben Kanyenji who supervised the collection of genetic materials [in full compliance with regulations according to the Convention on Biological Diversity (CBD)], planting and data collection in the field (KARI-Kiambere).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses M. Muraya.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muraya, M.M., Mutegi, E., Geiger, H.H. et al. Wild sorghum from different eco-geographic regions of Kenya display a mixed mating system. Theor Appl Genet 122, 1631–1639 (2011). https://doi.org/10.1007/s00122-011-1560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1560-5

Keywords

  • Sorghum
  • Mating System
  • Simple Sequence Repeat Marker
  • Outcrossing Rate
  • Wild Sorghum