Skip to main content

Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat

Abstract

Cephalosporium stripe, caused by Cephalosporium gramineum, can cause severe loss of wheat (Triticum aestivum L.) yield and grain quality and can be an important factor limiting adoption of conservation tillage practices. Selecting for resistance to Cephalosporium stripe is problematic; however, as optimum conditions for disease do not occur annually under natural conditions, inoculum levels can be spatially heterogeneous, and little is known about the inheritance of resistance. A population of 268 recombinant inbred lines (RILs) derived from a cross between two wheat cultivars was characterized using field screening and molecular markers to investigate the inheritance of resistance to Cephalosporium stripe. Whiteheads (sterile heads caused by pathogen infection) were measured on each RIL in three field environments under artificially inoculated conditions. A linkage map for this population was created based on 204 SSR and DArT markers. A total of 36 linkage groups were resolved, representing portions of all chromosomes except for chromosome 1D, which lacked a sufficient number of polymorphic markers. Quantitative trait locus (QTL) analysis identified seven regions associated with resistance to Cephalosporium stripe, with approximately equal additive effects. Four QTL derived from the more susceptible parent (Brundage) and three came from the more resistant parent (Coda), but the cumulative, additive effect of QTL from Coda was greater than that of Brundage. Additivity of QTL effects was confirmed through regression analysis and demonstrates the advantage of accumulating multiple QTL alleles to achieve high levels of resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Allan RE, Morris CF, Line RF, Anderson JA, Walker-Simmons MK, Donaldson E (2000) Registration of ‘Coda’ club wheat. Crop Sci 40:578–579

    Google Scholar 

  • Bailey JE, Lockwood JL, Wiese MV (1982) Infection of wheat by Cephalosporium gramineum as influenced by freezing of roots. Phytopathology 72:1324–1328

    Article  Google Scholar 

  • Blank CA, Murray TD (1998) Influence of pH and matric potential on germination of Cephalosporium gramineum conidia. Plant Dis 82:975–978

    Article  Google Scholar 

  • Bockus WW, O’Connor JP, Raymond PJ (1983) Effect of residue management method on incidence of Cephalosporium stripe under continuous winter wheat production. Plant Dis 67:1323–1324

    Article  Google Scholar 

  • Bockus WW, Davis MA, Todd TC (1994) Grain-yield responses of winter wheat coinoculated with Cephalosporium gramineum and Gaeumannomyces graminis var tritici. Plant Dis 78:11–14

    Article  Google Scholar 

  • Bovill WD, Horne M, Herde D, Davis M, Wildermuth GB, Sutherland MW (2010) Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet 121:127–136

    PubMed  Article  CAS  Google Scholar 

  • Bruehl GW (1956) Cephalosporium stripe disease of wheat in Washington. Phytopathology 46:178–180

    Google Scholar 

  • Bruehl GW (1957) Cephalosporium stripe disease of wheat. Phytopathology 47:641–649

    Google Scholar 

  • Bruehl GW (1983) Nonspecific genetic-resistance to soilborne fungi. Phytopathology 73:948–951

    Article  Google Scholar 

  • Bruehl GW, Lai P (1968) Influence of soil pH and humidity on survival of Cephalosporium gramineum in infested wheat straw. Can J Plant Sci 48:245–252

    Article  Google Scholar 

  • Bruehl GW, Murray TD, Allan RE (1986) Resistance of winter wheats to Cephalosporium stripe in the field. Plant Dis 70:314–316

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Creatura PJ, Safir GR, Scheffer RP, Sharkey TD (1981) Effects of Cephalosporium gramineum and a toxic metabolite on stomatal conductance of wheat. Physiol Plant Pathol 19:313–323

    CAS  Google Scholar 

  • Douhan GW, Murray TD (2001) Infection of winter wheat by a beta-glucuronidase-transformed isolate of Cephalosporium gramineum. Phytopathology 91:232–239

    PubMed  Article  CAS  Google Scholar 

  • Edwards JD, McCouch SR (2007) Molecular markers for use in plant molecular breeding and germplasm evaluation. In: Guimaraes E, Ruane J, Scherf B, Sonnino A, Dargie J (eds) Guimarês. Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 29–49

    Google Scholar 

  • Ellingboe AH (1983) Genetic aspects of interaction between plant hosts and their soilborne pathogens. Phytopathology 73:941–944

    Article  Google Scholar 

  • Ellis JB, Everhart BM (1894) New species of fungi from various localities. Proc Acad Nat Sci Phila 46:322–386

    Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MP, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    PubMed  Article  CAS  Google Scholar 

  • Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341

    Article  Google Scholar 

  • Gonzalez-Hernandez JL, Singh PK, Mergoum M, Adhikari TB, Kianian SF, Simsek S, Elias EM (2009) A quantitative trait locus on chromosome 5B controls resistance of Triticum turgidum (L.) var. diccocoides to Stagonospora nodorum blotch. Euphytica 166:199–206

    Article  CAS  Google Scholar 

  • Gul A, Allan RE (1972) Relation of club gene with yield and yield components of near-isogenic wheat lines. Crop Sci 12:297–301

    Article  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:1–36

    Google Scholar 

  • Hernandez-Delgado S, Reyes-Valdes MH, Rosa R, Mayek-Perez N (2009) Molecular markers associated with resistance to Macrophomina phaseolina (Tassi) Goid. in common bean. J Plant Pathol 91:163–170

    CAS  Google Scholar 

  • Horvath DP, Dahleen LS, Stebbing JA, Penner G (1995) A codominant PCR-based marker for assisted selection of durable stem rust resistance in barley. Crop Sci 35:1445–1450

    Article  CAS  Google Scholar 

  • Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201

    Article  Google Scholar 

  • Johnston RH, Mathre DE (1972) Effect of infection by Cephalosporium gramineum on winter wheat. Crop Sci 12:817–819

    Article  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kim HJ, Nahm SH, Lee HR, Yoon GB, Kim KT, Kang BC, Choi D, Kweon O, Cho MC, Kwon JK, Han JH, Kim JH, Park M, Ahn J, Choi S, Her N, Sung JH, Kim BD (2008) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118:15–27

    PubMed  Article  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Kobayashi K, Ui T (1979) Phytotoxicity and anti-microbial activity of graminin A, produced by Cephalosporium gramineum, the causal agent of Cephalosporium stripe disease of wheat. Physiol Plant Pathol 14:129–133

    Article  CAS  Google Scholar 

  • Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1–16

    PubMed  Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Lai P, Bruehl GW (1966) Survival of Cephalosporium gramineum in naturally infested wheat straws in soil in the field and in the laboratory. Phytopathology 56:213–218

    Article  Google Scholar 

  • Latin RX, Harder RW, Wiese MV (1982) Incidence of Cephalosporium stripe as influenced by winter wheat management practices. Plant Dis 66:229–230

    Article  Google Scholar 

  • Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C (2008) Mapping of Rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breed 127:602–611

    Article  CAS  Google Scholar 

  • Leonard JM, Watson CJW, Carter AH, Hansen JL, Zemetra RS, Santra DK, Campbell KG, Riera-Lizarazu O (2008) Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1. Theor Appl Genet 116:261–270

    PubMed  Article  CAS  Google Scholar 

  • Li HJ, Conner RL, Murray TD (2008) Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci 88:195–205

    Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910

    PubMed  Article  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    PubMed  Article  CAS  Google Scholar 

  • Liu ZH, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273

    PubMed  Article  CAS  Google Scholar 

  • Marshall DR, Langridge P, Appels R (2001) Wheat breeding in the new century—preface. Aust J Agric Res 52:1–4

    Article  Google Scholar 

  • Martin JM, Mathre DE, Johnston RH (1983) Genetic variation for reaction to Cephalosporium gramineum in four crosses of winter wheat. Can J Plant Sci 63:623–630

    Article  Google Scholar 

  • Martin JM, Mathre DE, Johnston RH (1986) Winter wheat genotype responses to Cephalosporium gramineum inoculum levels. Plant Dis 70:421–423

    Article  Google Scholar 

  • Martin JM, Johnston RH, Mathre DE (1989) Factors affecting the severity of Cephalosporium stripe of winter wheat. Can J Plant Pathol 11:361–367

    Article  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    PubMed  Article  CAS  Google Scholar 

  • Mathre DE, Johnston RH (1975a) Cephalosporium stripe of winter wheat—procedures for determining host response. Crop Sci 15:591–594

    Article  Google Scholar 

  • Mathre DE, Johnston RH (1975b) Cephalosporium stripe of winter wheat: infection processes and host response. Phytopathology 65:1244–1249

    Article  Google Scholar 

  • Mathre DE, Johnston RH (1990) A crown barrier related to Cephalosporium stripe resistance in wheat relatives. Can J Bot 68:1511–1514

    Google Scholar 

  • Mathre DE, Johnston RH, McGuire CF (1977) Cephalosporium stripe of winter wheat—pathogen virulence, sources of resistance, and effect on grain quality. Phytopathology 67:1142–1148

    Article  Google Scholar 

  • Mathre DE, Johnston RH, Martin JM (1985) Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species. Euphytica 34:419–424

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Schon GC (2004) QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica 137:1–11

    Article  CAS  Google Scholar 

  • Morton JB, Mathre DE (1980a) Identification of resistance to Cephalosporium stripe in winter wheat. Phytopathology 70:812–817

    Article  Google Scholar 

  • Morton JB, Mathre DE (1980b) Physiological effects of Cephalosporium gramineum on growth and yield of winter wheat cultivars. Phytopathology 70:807–811

    Article  Google Scholar 

  • Mundt CC (2002) Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Prot 21:93–99

    Article  Google Scholar 

  • Murray T (2006) Seed transmission of Cephalosporium gramineum in winter wheat. Plant Dis 90:803–806

    Article  Google Scholar 

  • Murray TD, Walter CC, Anderegg JC (1992) Control of Cephalosporium stripe of winter wheat by liming. Plant Dis 76:282–286

    Article  Google Scholar 

  • Nisikado Y, Matsumoto H, Yamuti K (1934) Studies on a new Cephalosporium, which causes the stripe disease of wheat. Bericht des Ohara Instituts fur Landwirtschaftliche Forschungen 6:275–306

    Google Scholar 

  • Pool RAF, Sharp EL (1969) Some environmental and cultural factors affecting Cephalosporium stripe of winter wheat. Plant Dis Reptr 53:898–902

    Google Scholar 

  • Rahman M, Mundt CC, Wolpert TJ, Riera-Lizarazu O (2001) Sensitivity of wheat genotypes to a toxic fraction produced by Cephalosporium gramineum and correlation with disease susceptibility. Phytopathology 91:702–707

    PubMed  Article  CAS  Google Scholar 

  • Raymond PJ, Bockus WW (1984) Effect of seeding date of winter wheat on incidence, severity, and yield loss caused by Cephalosporium stripe in Kansas. Plant Dis 68:665–667

    Google Scholar 

  • Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res 52:1221–1234

    Article  CAS  Google Scholar 

  • Richardson MJ, Rennie WJ (1970) An estimate of the loss of yield caused by Cephalosporium gramineum in wheat. Plant Pathol 19:138–140

    Article  Google Scholar 

  • Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Phytopathology 98:215–221

    PubMed  Article  CAS  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Slope DB, Bardner R (1965) Cephalosporium stripe of wheat and root damage by insects. Plant Pathol 14:184–187

    Article  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Spalding DH, Bruehl GW, Foster RJ (1961) Possible role of pectinolytic enzymes and polysaccharide in pathogenesis by Cephalosporium gramineum in wheat. Phytopathology 51:227–235

    CAS  Google Scholar 

  • Specht LP, Murray TD (1990) Effects of root-wounding and inoculum density on Cephalosporium stripe in winter wheat. Phytopathology 80:1108–1114

    Article  Google Scholar 

  • Taguchi K, Ogata N, Kubo T, Kawasaki S, Mikami T (2009) Quantitative trait locus responsible for resistance to Aphanomyces root rot (black root) caused by Aphanomyces cochlioides Drechs. in sugar beet. Theor Appl Genet 118:227–234

    PubMed  Article  Google Scholar 

  • Tang SX, Leon A, Bridges WC, Knapp SJ (2006) Quantitative trait loci for correlated seed traits are tightly linked to branching and pericarp pigment loci in sunflower. Crop Sci 46:721–734

    Article  Google Scholar 

  • Tomas A, Feng GH, Reeck GR, Bockus WW, Leach JE (1990) Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Mol Plant Microbe Interact 3:221–224

    Article  CAS  Google Scholar 

  • Tsunewaki K, Koba T (1979) Production and genetic-characterization of the co-isogenic lines of a common wheat Triticum aestivum CV. S-615 for ten major genes. Euphytica 28:579–592

    Article  Google Scholar 

  • Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    PubMed  Article  CAS  Google Scholar 

  • Van Ooijen JW, Kyazma BV (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands

    Google Scholar 

  • Van Wert SL, Ravenscroft AV, Fulbright DW (1984) Screening wheat lines as seedlings for resistance to Cephalosporium gramineum. Plant Dis 68:1036–1038

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182

    PubMed  Article  Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    PubMed  Article  CAS  Google Scholar 

  • Zemetra RS, Souza EJ, Lauver M, Windes J, Guy SO, Brown B, Robertson L, Kruk M (1998) Registration of ‘Brundage’ wheat. Crop Sci 38:1404

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zwer PK, Sombrero A, Rickman RW, Klepper B (1995) Club and common wheat yield component and spike development in the Pacific Northwest. Crop Sci 35:1590–1597

    Article  Google Scholar 

Download references

Acknowledgments

We thank Karl Rhinhart and Erling Jacobsen for excellent management of the field plots. This research was supported by a USDA STEEP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Mundt.

Additional information

Communicated by I. Mackay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 132 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quincke, M.C., Peterson, C.J., Zemetra, R.S. et al. Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat. Theor Appl Genet 122, 1339–1349 (2011). https://doi.org/10.1007/s00122-011-1535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1535-6

Keywords

  • Quantitative Trait Locus
  • Fusarium Head Blight
  • Quantitative Trait Locus Analysis
  • Stripe Rust
  • Composite Interval Mapping