Skip to main content
Log in

A flexible quantitative methodology for the analysis of gene-flow between conventionally bred maize populations using microsatellite markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Previous studies of gene-flow in agriculture have used a range of physical and biochemical markers, including transgenes. However, physical and biochemical markers are not available for all commercial varieties, and transgenes are difficult to use when trying to estimate gene flow in the field where the use of transgenes is often restricted. Here, we demonstrate the use of simple sequence repeat microsatellite markers (SSRs) to study gene flow in maize. Developing the first quantitative analysis of pooled SSR samples resulted in a high sampling efficiency which minimised the use of resources and greatly enhanced the possibility of hybrid detection. We were able to quantitatively distinguish hybrids in pools of ten samples from non-hybrid parental lines in all of the 24 pair-wise combinations of commercial varieties tested. The technique was used to determine gene flow in field studies, from which a simple model describing gene flow in maize was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

PAGE:

Polyacrylamide gel electrophoresis

SSR:

Simple sequence repeat

References

  • Bannert M, Vogler A, Stamp P (2008) Short-distance cross-pollination of maize in a small-field landscape as monitored by grain color markers. European J Agron 29:29–32

    Article  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R (1997) Relative mutation rates at di- tri- and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Devaux C, Lavigne C, Austerlitz F, Klein EK (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Mol Ecol 16:487–499

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Gérard PR, Klein EK, Austerlitz F, Fernández-Majarrés JF, Frascaria-Lacoste N (2006) Assortive mating and differential male mating success in an ash hybrid zone population. BMC Evol Biol 6:96

    Article  PubMed  Google Scholar 

  • Halsey ME, Redmund KM, Davis CA, Qualls M, Eppard PJ, Berberich SA (2005) Isolation of maize from pollen mediated gene flow by time and distance. Crop Sci 45:2172–2185

    Article  Google Scholar 

  • Hernández M, Duplan MN, Berthier G, Vaitilingom M, Hauser W (2004) Development and comparison of four real-time polymerase chain reaction systems for specific detection and quantification of Zea mays L. J Agric Food Chem 52:4632–4637

    Article  PubMed  Google Scholar 

  • Lawrence CJ, Seigfried TE, Brendel V (2005) The Maize Genetics and Genomics Database. The community resource for access to diverse maize data. Plant Physiol 138:55–58

    Article  CAS  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Li YC, Röder MS, Fahima T, Kirzhner VM, Beiles A, Korol AB (2002) Climatic effects on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at Yehudiyya microsite. Heredity 89:127–132

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Fahima T, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2003) Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity 90:150–156

    Article  CAS  PubMed  Google Scholar 

  • Morand M-E, Brachet S, Rossignol P, Dufour J, Frascaria-Lacoste N (2002) A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Mol Ecol 11:377–385

    Article  CAS  PubMed  Google Scholar 

  • Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software, Inc, San Diego

    Google Scholar 

  • Pineyro-Nelson A, vanHeerwaarden J, Perales HR, Serratos-Hernández JA, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Alvarez-Buylla ER (2009) Transgenes in mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol 18:750–761

    Article  CAS  PubMed  Google Scholar 

  • Pla M, La Paz J-L, Penãs G, Garciá N, Palaudelmás M, Esteve T, Messeguer J, Melé E (2006) Assessment of real-time PCR based methods for quantification of pollen-mediated gene-flow from GM to conventional maize in a field study. Trans Res 15:219–228

    Article  CAS  Google Scholar 

  • Ross GJS (1987) Maximum likelihood program. The Numerical Algorithms Group Ltd. Rothampsted Experimental Station. Lawes Agricultural Trust, England

    Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence repeat markers developed from maize sequences found in the GENBANK database: map construction. Crop Sci 36:1676–1683

    Article  CAS  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acid Res 12:4127–4138

    Article  CAS  Google Scholar 

  • Tixier MH, Sourdille RM, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    CAS  Google Scholar 

  • USDA (2010) World agricultural production. Circular series WAP 10–05. USDA. Foreign agricultural service, USA

    Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C (2008) A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res 16:203–211

    Article  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instabililty in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    CAS  PubMed  Google Scholar 

  • Wolff RK, Plaeke R, Jeffreys AJ, White R (1991) Unequal crossing over between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5:382–384

    Article  Google Scholar 

  • Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D (2006) Event-specific quantitative detection of nine genetically modified maize using one novel standard reference molecule. J Agric Food Chem 55:15–24

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by UK Department of Environment Food and Rural Affairs grant (CTC0104) and by EU Framework VI programme grant Sustainable Introduction of GMOs into European Agriculture (SIGMEA). HT was supported by an emeritus fellowship from the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. H. Robson.

Additional information

Communicated by J.-B. Veyrieras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, P.R.H., Kelly, R., Jensen, E.F. et al. A flexible quantitative methodology for the analysis of gene-flow between conventionally bred maize populations using microsatellite markers. Theor Appl Genet 122, 819–829 (2011). https://doi.org/10.1007/s00122-010-1489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1489-0

Keywords

Navigation