Theoretical and Applied Genetics

, Volume 120, Issue 7, pp 1461–1471 | Cite as

Genetic dissection of scent metabolic profiles in diploid rose populations

Original Paper

Abstract

The scent of flowers is a very important trait in ornamental roses in terms of both quantity and quality. In cut roses, scented varieties are a rare exception. Although metabolic profiling has identified more than 500 scent volatiles from rose flowers so far, nothing is known about the inheritance of scent in roses. Therefore, we analysed scent volatiles and molecular markers in diploid segregating populations. We resolved the patterns of inheritance of three volatiles (nerol, neryl acetate and geranyl acetate) into single Mendelian traits, and we mapped these as single or oligogenic traits in the rose genome. Three other volatiles (geraniol, β-citronellol and 2-phenylethanol) displayed quantitative variation in the progeny, and we mapped a total of six QTLs influencing the amounts of these volatiles onto the rose marker map. Because we included known scent related genes and newly generated ESTs for scent volatiles as markers, we were able to link scent related QTLs with putative candidate genes. Our results serve as a starting point for both more detailed analyses of complex scent biosynthetic pathways and the development of markers for marker-assisted breeding of scented rose varieties.

Supplementary material

122_2010_1268_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 59 kb)

References

  1. Banthorpe DV, LePatourel GN, Francis MJ (1972) Biosynthesis of geraniol and nerol and beta-d-glucosides in Pelargonium graveolens and Rosa dilecta. Biochem J 130:1045–1054PubMedGoogle Scholar
  2. Ben Zvi MM, Florence NZ, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits: coengineering of scent and colour biosynthesis in flowers. Plant Biotech J 6:403–415CrossRefGoogle Scholar
  3. Bergougnoux VJ, Caissard C, Jullien F, Magnard JL, Scalliet G, Cock JM, Hugueney P, Baudino S (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:853–866CrossRefPubMedGoogle Scholar
  4. Biber A, Kaufmann H, Linde M, Spiller M, Terefe D, Debener T (2009) Microsatellite markers from a BAC contig spanning the Rdr1 locus: a tool for marker assisted selection in roses. Theor Appl Genet. doi:10.1007/s00122-009-1197-9
  5. Boatright J, Negre F, Chen F, Kish CM, Wood B, Peel G, Orlova E, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011CrossRefPubMedGoogle Scholar
  6. Channeliere S, Riviere S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. Febs Lett 515:35–38CrossRefPubMedGoogle Scholar
  7. Cherri-Martin M, Jullien F, Heizmann P, Baudino S (2007) Fragrance heritability in hybrid tea roses. Sci Hortic 113:177–181CrossRefGoogle Scholar
  8. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  9. D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340CrossRefPubMedGoogle Scholar
  10. Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280CrossRefGoogle Scholar
  11. Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899CrossRefGoogle Scholar
  12. Dudareva N, Cseke L, Blanc VM, Pichersky E (1996a) Molecular characterization and cell type-specific expression of linalool synthase gene from Clarkia. Plant Physiol 111:815Google Scholar
  13. Dudareva N, Cseke L, Blanc VM, Pichersky E (1996b) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148CrossRefPubMedGoogle Scholar
  14. Dudareva N, D’Auria JC, Nam KH, Raguso RA, Pichersky E (1998a) Acetyl-CoA:benzylalcohol acetyltransferase–an enzyme involved in floral scent production in Clarkia breweri. Plant J 14:297–304CrossRefPubMedGoogle Scholar
  15. Dudareva N, Raguso RA, Wang J, Ross JR, Pichersky E (1998b) Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol 116:599–604CrossRefPubMedGoogle Scholar
  16. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902CrossRefPubMedGoogle Scholar
  17. Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520CrossRefPubMedGoogle Scholar
  18. Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521CrossRefGoogle Scholar
  19. Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–214CrossRefPubMedGoogle Scholar
  20. Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Weinstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338CrossRefPubMedGoogle Scholar
  21. Heinrichs F (2008) International statistics flowers and plants, vol 56. International Association of Horticultural Producers/Union Fleurs, Voorhout, The Netherlands, pp 16–90Google Scholar
  22. Helsper JPFG, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95CrossRefGoogle Scholar
  23. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23CrossRefGoogle Scholar
  24. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379CrossRefPubMedGoogle Scholar
  25. Kaufmann H, Mattiesch L, Lorz H, Debener T (2003) Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Mol Gen Genomics 268:666–674Google Scholar
  26. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  27. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  28. Lavid N, Wang JH, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant P 129:1899–1907CrossRefGoogle Scholar
  29. Linde M, Mattiesch L, Debener T (2004) Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theor Appl Genet 109:1261–1266CrossRefPubMedGoogle Scholar
  30. Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092CrossRefPubMedGoogle Scholar
  31. Mathieu S, Cin VD, Fei ZJ, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 60:325–337CrossRefPubMedGoogle Scholar
  32. Oka N, Ohishi H, Hatano T, Hornberger M, Sakata K, Yagi A, Watanabe N (1999) Aroma evolution during flower opening in Rosa damascena Mill. Zeitschrift fur Naturforschung C-A 54:889–895Google Scholar
  33. Pichersky E, Dudareva N (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol 25:105–110CrossRefPubMedGoogle Scholar
  34. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811CrossRefPubMedGoogle Scholar
  35. Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478CrossRefPubMedGoogle Scholar
  36. Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N (2007) Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Biosci Biotechnol Biochem 71:2408–2419CrossRefPubMedGoogle Scholar
  37. Sanguinetti CJ, Dias NE, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921PubMedGoogle Scholar
  38. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732CrossRefPubMedGoogle Scholar
  39. Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2003) Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiol 131:1868–1876CrossRefPubMedGoogle Scholar
  40. Shepherd M, Chaparro JX, Teasdale R (1999) Genetic mapping of monoterpene composition in an interspecific eucalypt hybrid. Theor Appl Genet 99:1207–1215CrossRefGoogle Scholar
  41. Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16:977–992CrossRefPubMedGoogle Scholar
  42. Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V, Wageningen, NetherlandsGoogle Scholar
  43. Van Ooijen J (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V, Wageningen, NetherlandsGoogle Scholar
  44. Van Schie CCN, Haring MA, Schuurink RC (2006) Regulation of terpenoid and benzenoid production in flowers. Curr Opin Plant Biol 9:203–208CrossRefPubMedGoogle Scholar
  45. Williams JF (1989) Optimization strategies for the polymerase chain reaction. Biotechniques 7:762–769CrossRefPubMedGoogle Scholar
  46. Wu SQ, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y (2003) Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. J Biosci Bioeng 96:119–128PubMedGoogle Scholar
  47. Wu SQ, Watanabe N, Mita S, Dohra H, Ueda Y, Shibuya M, Ebizuka Y (2004) The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1, 3, 5-trimethoxybenzene. Plant Physiol 135:95–102CrossRefPubMedGoogle Scholar
  48. Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005a) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777CrossRefPubMedGoogle Scholar
  49. Yan ZF, Dolstra O, Hendriks T, Prins TW, Stam P, Visser PB (2005b) Vigour evaluation for genetics and breeding in rose. Euphytica 145:339–347CrossRefGoogle Scholar
  50. Yang RQ, Yi NJ, Xu SZ (2006) Box-Cox transformation for QTL mapping. Genetica 128:133–143CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Molecular Plant Breeding, Institute for Plant GeneticsLeibniz University HannoverHannoverGermany
  2. 2.Institute of Food ChemistryLeibniz University HannoverHannoverGermany

Personalised recommendations