Skip to main content
Log in

Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A cDNA (msaCIG) encoding a cold-inducible Y2K4 dehydrin in alfalfa (Medicago sativa spp. sativa) was shown to share extensive homology with sequences from other species and subspecies of Medicago. Differences were mainly the result of the occurrence of large indels, amino acids substitutions/deletions and sequence duplications. Using a combination of a bulk segregant analysis and RFLP hybridization, we uncovered an msaCIG polymorphism that increases in frequency in response to recurrent selection for superior freezing tolerance. Progenies from crosses between genotypes with (D+) or without (D−) the polymorphic dehydrin significantly differed in their tolerance to subfreezing temperatures. Based on the msaCIG sequence, we looked for intragenic variations that could be associated to the polymorphism detected on Southern blots. Amplifications with primers targeting the 3′ half side of msaCIG revealed fragment size variations between pools of genotypes with (+) or without (−) the polymorphism. Three major groups of amplicons of ≈370 nt (G1), 330 nt (G2), and 290 nt (G3) were distinguished. The G2 group was more intensively amplified in pools of genotypes with the polymorphic dehydrin and was associated to a superior freezing tolerance phenotype. Sequences analysis revealed that size variation in the 3′ half was attributable to the variable occurrence of large indels. Single amino acid substitutions and/or deletions caused major differences in the prediction of the secondary structure of the polypeptides. The identification of dehydrin variants associated to superior freezing tolerance paves the way to the development of functional markers and the fixation of favorable alleles in various genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch). Plant Mol Biol 33:61–70

    Article  CAS  PubMed  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006) Global analysis of genes regulated by low temperature and photoperiod in peach bark. J Am Soc Hort Sci 131:551–563

    CAS  Google Scholar 

  • Bhattarai T, Fettig S (2005) Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiol Plant 123:452–458

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Caixeta ET, Borem A, de Azevedo Fagundes S, Niestche S, de Barros GE, Moreira MA (2003) Inheritance of angular leaf spot resistance in common bean line BAT 332 and identification of RAPD markers linked to the resistance gene. Euphytica 134:297–303

    Article  CAS  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Castonguay Y, Laberge S, Nadeau P, Vézina L-P (1994) A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Mol Biol 24:799–804

    Article  CAS  PubMed  Google Scholar 

  • Castonguay Y, Nadeau P, Lechasseur P, Chouinard L (1995) Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness. Crop Sci 35:509–516

    CAS  Google Scholar 

  • Castonguay Y, Laberge S, Brummer EC, Volenec JJ (2006) Alfalfa winter hardiness: a research retrospective and integrated perspective. Adv Agron 90:203–265

    Article  CAS  Google Scholar 

  • Castonguay Y, Michaud R, Nadeau P, Bertrand A (2009) An indoor screening method for improvement of freezing tolerance in alfalfa. Crop Sci 49:809–818

    Article  Google Scholar 

  • Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • De Vries S, He H, Bisseling T (1988) Isolation of total and polysomal RNA from plant tissues. Plant Mol Biol Manual B6:1–13

    Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bañuelos ML, Gardea AA, Winzerling JJ, Vazquez-Moreno L (2009) Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus domestica). Plant Mol Biol Rep (on line first publication)

  • Grosselindemann E, Robertson M, Wilmer JA, Chandler PM (1998) Genetic variation in pea (Pisum) dehydrins: sequence elements responsible for length differences between dehydrin alleles and between dehydrin loci in Pisum sativum L. Theor Appl Genet 96:1186–1192

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech J 2:381–387

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566–13570

    Article  CAS  PubMed  Google Scholar 

  • Ivashuta S, Uchiyama K, Gau M, Shimamoto Y (2002) Linear amplification coupled with controlled extension as a means of probe amplification in a cDNA array and gene expression analysis during cold acclimation in alfalfa (Medicago sativa L.). J Exp Bot 53:351–359

    Article  CAS  PubMed  Google Scholar 

  • Jones JS, Bingham ET (1995) Inbreeding depression in alfalfa and cross-pollinated crops. Plant Breed Rev 13:209–233

    Google Scholar 

  • Koag M-C, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  CAS  Google Scholar 

  • Marian CO, Krebs SL, Arora R (2004) Dehydrin variability among rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol 161:773–780

    Article  CAS  Google Scholar 

  • Michaud R, Richard C, Willemot C, Gasser H (1983) Apica alfalfa. Can J Plant Sci 63:547–549

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Mingeot D, Dauchot N, Van Cutsem P, Watillon B (2009) Characterisation of two cold induced dehydrin genes from Cichorium intybus L. Mol Biol Rep 36:1995–2001

    Article  CAS  PubMed  Google Scholar 

  • Momma M, Kaneko S, Haraguchi K, Matsukura U (2003) Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci Biotech Biochem 67:1832–1835

    Article  CAS  Google Scholar 

  • Morgante M (2006) Plant genome organisation and diversity: the year of the junk!. Curr Opin Biotechnol 17:168–173

    CAS  PubMed  Google Scholar 

  • Muller M-H, Poncet C, Prosperi JM, Santoni S, Ronfort J (2006) Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol 15:1589–1602

    Article  CAS  PubMed  Google Scholar 

  • Natali L, Giordani T, Cavallini A (2003) Sequence variability of a dehydrin gene within Helianthus annuus. Theor Appl Genet 106:811–818

    CAS  PubMed  Google Scholar 

  • Neven LG, Haskell DW, Hofig A, Li Q-B, Guy CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21:291–305

    Article  CAS  PubMed  Google Scholar 

  • Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ (2007) Differences in freeze tolerance of Zoysiagrasses: I. Role of proteins. Crop Sci 47:2162–2169

    Article  CAS  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  CAS  PubMed  Google Scholar 

  • Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata cold-acclimation specific genes. Plant Physiol 146:1242–1254

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Lazic JV, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin S, Schilperoort RA (eds) Plant molecular biology manual A6. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (l-proline)-type II structure. Plant Physiol 131:963–975

    Article  CAS  PubMed  Google Scholar 

  • Statistical Analysis System (2006), Version 9.1. SAS Institute, Cary, NC, USA

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Thapa B, Arora R, Knapp AD, Brummer EC (2008) Applying freezing test to quantify cold acclimation in Medicago truncatula. J Am Soc Hort Sci 133:684–691

    Google Scholar 

  • Varshney A, Mohapatra T, Sharma RP (2004) Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet 109:153–159

    Article  CAS  PubMed  Google Scholar 

  • Velten J, Oliver MJ (2001) Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol 45:713–722

    Article  CAS  PubMed  Google Scholar 

  • Volenec JJ, Cunningham SM, Haagenson DM, Berg WK, Joern BC, Wiersma DW (2002) Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crops Res 75:97–110

    Article  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Welling A, Rinne P, Vihera AA, Kontunen SS, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Wolfraim LA, Dhindsa RS (1993) Cloning and sequencing of the cDNA for cas17, a cold acclimation-specific gene of alfalfa. Plant Physiol 103:667–668

    Article  CAS  PubMed  Google Scholar 

  • Wolfraim LA, Langis R, Tyson H, Dhindsa RS (1993) cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol 101:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziokowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of Mrs. Josée Bourassa, Josée Michaud and Pierre Lechasseur for their technical assistance. They would also like to thank Dr Isobel Parkin from Agriculture and Agri-Food Canada in Saskatoon for her valuable comments on the manuscript. The contribution of Mr David Gagné for bioinformatics analyses is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Castonguay.

Additional information

Communicated by T. Close.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rémus-Borel, W., Castonguay, Y., Cloutier, J. et al. Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor Appl Genet 120, 1163–1174 (2010). https://doi.org/10.1007/s00122-009-1243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1243-7

Keywords

Navigation