Skip to main content

A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula

Abstract

A higher understanding of genetic and genomic bases of partial resistance in plants and their diversity regarding pathogen variability is required for a more durable management of resistance genetic factors in sustainable cropping systems. In this study, we investigated the diversity of genetic factors involved in partial resistance to Aphanomyces euteiches, a very damaging pathogen on pea and alfalfa, in Medicago truncatula. A mapping population of 178 recombinant inbred lines, from the cross F83005.5 (susceptible) and DZA045.5 (resistant), was used to identify quantitative trait loci for resistance to four A. euteiches reference strains belonging to the four main pathotypes currently known on pea and alfalfa. A major broad-spectrum genomic region, previously named AER1, was localized to a reduced 440 kb interval on chromosome 3 and was involved in complete or partial resistance, depending on the A. euteiches strain. We also identified 21 additive and/or epistatic genomic regions specific to one or two strains, several of them being anchored to the M. truncatula physical map. These results show that, in M. truncatula, a complex network of genetic loci controls partial resistance to different pea and alfalfa pathotypes of A. euteiches, suggesting a diversity of molecular mechanisms underlying partial resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akamatsu HO, Grunwald NJ, Chilvers MI, Porter LD, Peever TL (2007) Development of codominant simple sequence repeat, single nucleotide polymorphism and sequence characterized amplified region markers for the pea root rot pathogen, Aphanomyces euteiches. J Microbiol Methods 71:82–86

    Article  PubMed  CAS  Google Scholar 

  • Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerre-Tugaye MT, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C (2008a) Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol Plant Microbe Interact 21:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008b) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  PubMed  CAS  Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P, Muel X, Tourneur J, Denarie J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium–legume symbiosis. Plant Mol Biol Report 8:40–49

    Article  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Bikard D, Patel D, Le Mette C, Giorgi V, Camilleri C, Bennett MJ, Loudet O (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323:623–626

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathol 94:370–379

    Article  CAS  Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant Microbe Interact 10:872–878

    Article  CAS  Google Scholar 

  • Carrillo G, Wu J, Liu B, Sugiyama N, Ona I, Variar M, Courtois B, Leach JE, Goodwin PH, Leung H, Cruz CMV (2005) Association of candidate defense genes with quantitative resistance to rice blast and in silico analysis of their characteristics. Rice is life: scientific perspectives for the 21st century. In: Proceedings of the World Rice Research Conference held in Tsukuba, Japan, 4–7 November 2004, pp 479–482

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. PNAS 101(43):15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F (2004) Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55:109–120

    Article  PubMed  CAS  Google Scholar 

  • Colditz F, Niehaus K, Krajinski F (2007) Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta 226:57–71

    Article  PubMed  CAS  Google Scholar 

  • Davis DW, Fritz VA, Pfleger FL, Percich JA, Malvick DK (1995) MN 144, MN 313, and MN 314: garden pea lines resistant to root rot caused by Aphanomyces euteiches Drechs. HortScience 30(3):639–640

    Google Scholar 

  • Dhandaydham M, Charles L, Zhu H, Starr JL, Huguet T, Cook DR, Prosperi JM, Opperman C (2008) Characterization of root-knot nematode resistance in Medicago truncatula. J Nematol 40:46–54

    PubMed  Google Scholar 

  • Djebali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathé C, Bottin A, Cazaux M, Pilet-Nayel M-L, Baranger A, Aouani ME, Esquerré-Tugayé M-T, Dumas B, Huguet T, Jacquet C (2009) Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is Controlled by a major QTL rich in proteasome-related genes. Mol Plant Microbe Interact 22:1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Esquerré-Tugayé M-T, Campargue C, Mazau D (1999) The response of plant cell wall hydroxyprolin-rich glycoproteins to microbial pathogens and their elicitors. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 157–170

    Google Scholar 

  • Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593

    Article  PubMed  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Gaulin E, Madoui MA, Bottin A, Jacquet C, Mathe C, Couloux A, Wincker P, Dumas B (2008) Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways. PLoS ONE 3:e1723

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis Rpm1 gene enabling dual-specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • Grunwald NJ, Hoheisel GA (2006) Hierarchical analysis of diversity, selfing, and genetic differentiation in populations of the oomycete Aphanomyces euteiches. Phytopathol 96:1134–1141

    Article  CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131

    Article  PubMed  CAS  Google Scholar 

  • Holland JB (1998) EPISTACY: A SAS program for detecting two-locus epistatic interactions using genetic marker information. J Heredity 89:374–375

    Article  Google Scholar 

  • Holub EB, Grau CR, Parke JL (1991) Evaluation of the forma-specialis concept in Aphanomyces euteiches. Mycol Res 95:147–157

    Article  Google Scholar 

  • Hu KM, Qiu DY, Shen XL, Li XH, Wang SP (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1:786–793

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Vleeshouwers VGAA, Werij JS, Hutten RCB, van Eck HJ, Visser RGF, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17:428–435

    Article  PubMed  CAS  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jones FR, Drechsler C (1925) Root rot of peas in the United States caused by Aphanomyces euteiches. J Agric Res 30:293–325

    Google Scholar 

  • Jubault M, Lariagon C, Simon M, Delourme R, Manzanares-Dauleux MJ (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis thaliana. Theor Appl Genet 117:191–202

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR (2008) Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biol 8:30

    Google Scholar 

  • Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Jacob HS, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Klingler JP, Edwards OR, Singh KB (2007) Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytol 173:630–640

    Article  PubMed  CAS  Google Scholar 

  • Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638

    Article  PubMed  CAS  Google Scholar 

  • Levenfors JP, Wikström M, Persson L, Gerhardson B (2003) Pathogenicity of Aphanomyces spp. from different leguminous crops in Sweden. Eur J Plant Pathol 109:535–543

    Article  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XZ, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS (1999) A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet 261:58–63

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo-Rey J, Ali J, Vijayakumar CHM, Yu SB, Khush GS (2006) Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. PNAS 103:7994–7999

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute technical report, 3rd edn. Whitehouse Technical Institute, Cambridge

  • Linford MB (1927) Additional hosts of Aphanomyces euteiches, the pea root rot fungus. Phytopathol 17:133–134

    Google Scholar 

  • Liu ZQ, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  PubMed  CAS  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hénaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Ma HX, Bai GH, Zhang X, Lu WZ (2006) Main effects, epistasis, and environmental interactions of quantitative trait loci for fusarium head blight resistance in a recombinant inbred population. Phytopathol 96:534–541

    Article  CAS  Google Scholar 

  • Madoui MA, Gaulin E, Mathe C, San Clemente H, Couloux A, Wincker P, Dumas B (2007) AphanoDB: a genomic resource for Aphanomyces pathogens. BMC Genomics 8:471

    Article  PubMed  Google Scholar 

  • Malvick DK, Grau CR (2001) Characteristics and frequency of Aphanomyces euteiches races 1 and 2 associated with Alfalfa in the Midwestern United States. Plant Dis 85:740–744

    Article  Google Scholar 

  • Malvick DK, Percich JA (1999) Identification of Pisum sativum germ plasm with resistance to root rot caused by multiple strains of Aphanomyces euteiches. Plant Dis 83:51–54

    Article  Google Scholar 

  • Malvick DK, Grau CR, Percich JA (1998) Characterization of Aphanomyces euteiches strains based on pathogenicity tests and random amplified polymorphic DNA analyses. Mycol Res 102:465–475

    Article  CAS  Google Scholar 

  • Malvick D, Grunwald N, Dyer A (2009) Population structure, races, and host range of Aphanomyces euteiches from alfalfa production fields in the central USA. Eur J Plant Pathol 123:171–182

    Article  Google Scholar 

  • Manzanares-Dauleux MJ, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101:885–891

    Article  CAS  Google Scholar 

  • Moussart A, Wicker E, Duparque M, Rouxel F (2001) Development of an efficient screening test for pea resistance to Aphanomyces euteiches. In: 4th European conference on grain legumes, Cracow, pp 272–273

  • Moussart A, Onfroy C, Lesné A, Esquibet M, Grenier E, Tivoli B (2007) Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). Eur J Plant Pathol 117:57–69

    Article  Google Scholar 

  • Moussart A, Even MN, Tivoli B (2008) Reaction of genotypes from several species of grain and forage legumes to infection with a French pea isolate of the oomycete Aphanomyces euteiches. Eur J Plant Pathol 122:321–333

    Article  Google Scholar 

  • Mun JH, Kim DJ, Choi HK, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a ressource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555

    Article  PubMed  CAS  Google Scholar 

  • Perchepied L, Kroj T, Tronchet M, Loudet O, Roby D (2006) Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS ONE 1:e123

    Article  PubMed  CAS  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathol 95:1287–1293

    Article  CAS  Google Scholar 

  • Pilet-Nayel ML, Prosperi JM, Hamon C, Lesne A, Lecointe R, Le Goff I, Herve M, Deniot G, Delalande M, Huguet T, Jacquet C, Baranger A (2009) AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathol 99:203–208

    Article  CAS  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  PubMed  CAS  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, Castresana C, Hamberg M, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux MJ (2004) Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 108:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed  CAS  Google Scholar 

  • Rosahl S (1996) Lipoxygenases in plants—their role in development and stress response. Zeitschrift für Naturforschung. (C) 51:123–138

    CAS  Google Scholar 

  • Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35:253–264

    Article  Google Scholar 

  • Rose LE, Michelmore RW, Langley CH (2007) Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto. Genetics 175:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237–2250

    Article  PubMed  Google Scholar 

  • Samac DA, Graham MA (2007) Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant Physiol 144:582–587

    Article  PubMed  CAS  Google Scholar 

  • SAS (1989) SAS/STAT users guide, version 6, 4th edn. SAS Institute, Cary

    Google Scholar 

  • Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Smart CD, Myers KL, Restrepo S, Martin GB, Fry WE (2003) Partial resistance of tomato to Phytophthora infestans is not dependent upon ethylene, jasmonic acid, or salicylic acid signaling pathways. Mol Plant Microbe Interact 16:141–148

    Article  PubMed  CAS  Google Scholar 

  • Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667

    Article  PubMed  CAS  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ (2006) Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot 98:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Rieseberg LH (2003) Genetic architecture of a selection response in Arabidopsis thaliana. Evolution 57:2531–2539

    PubMed  CAS  Google Scholar 

  • Vailleau F, Sartorel E, Jardinaud MF, Chardon F, Genin S, Huguet T, Gentzbittel L, Petitprez M (2007) Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Mol Plant Microbe Interact 20:159–167

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    Article  Google Scholar 

  • Vandemark GJ, Grunwald NJ (2004) Reaction of Medicago truncatula to Aphanomyces euteiches race 2. Arch Phytopathol Plant Prot 37:59–67

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wicker E, Rouxel F (2001) Specific behaviour of french Aphanomyces euteiches Drechs. populations for virulence and aggressiveness on pea, related to isolates from Europe, America and New Zealand. Eur J Plant Pathol 107:919–929

    Article  Google Scholar 

  • Wicker E, Moussart A, Duparque M, Rouxel F (2003) Further contributions to the development of a differential set of pea cultivars (Pisum sativum) to investigate the virulence of isolates of Aphanomyces euteiches. Eur J Plant Pathol 109:47–60

    Article  CAS  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  PubMed  CAS  Google Scholar 

  • Yan JQ, Wang J, Zhang H (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    Article  PubMed  CAS  Google Scholar 

  • Yang SM, Gao MQ, Xu CW, Gao JC, Deshpande S, Lin SP, Roe BA, Zhu HY (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169

    Article  PubMed  Google Scholar 

  • Yu J, Zhou Y, Cang J, Xu J (2006) Mapping of quantitative resistance loci to bacterial leaf blight and their race specificity in rice (Oryza sativa L.). Acta Agronom Sin 32:1611–1617

    CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a pre-doctoral fellowship from INRA, Département de Génétique et Amelioration des Plantes, French Ministry of Agriculture and Fishing and UNIP (Union Nationale Interprofessionnelle des Plantes riches en proteines, Paris, France), that we greatly acknowledge. It was also supported by the FP6 Grain Legume Integrated Project (FOOD-CT-2004-506223) (GLIP). We wish to thank Dr Malvick for kindly providing the alfalfa-infecting strains of A. euteiches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Hamon.

Additional information

Communicated by R. Varshney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamon, C., Baranger, A., Miteul, H. et al. A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula . Theor Appl Genet 120, 955–970 (2010). https://doi.org/10.1007/s00122-009-1224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1224-x

Keywords

  • Recombinant Inbred Line
  • Partial Resistance
  • Recombinant Inbred Line Population
  • Linkage Group
  • CCPs