Skip to main content
Log in

Broadening the avenue of intersubgenomic heterosis in oilseed Brassica

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the “subgenome”. Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the Ar and Cc genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard RW (1960) Principles of plant breeding. John Wiley & Sons Inc, New York, p 68

    Google Scholar 

  • Basbag S, Gencer O (2007) Investigation of some yield and fibre quality characteristics of interspecific hybrid (Gossypium hirsutum L.xG-barbadense L.) cotton varieties. Hereditas 144:33–42

    Article  PubMed  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  Google Scholar 

  • Bennett RA, Thiagarajah MR, King JR, Rahman MH (2008) Interspecific cross of Brassica oleracea var. alboglabra and B-napus: effects of growth condition and silique age on the efficiency of hybrid production, and inheritance of erucic acid in the self-pollinated backcross generation. Euphytica 164:593–601

    Article  CAS  Google Scholar 

  • Chen X, Li MT, Shi JQ, Fu DH, Qian W, Zou J, Zhang CY, Meng JL (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet 117:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res 104:103–111

    Article  Google Scholar 

  • Fu T (2000) Breeding and utilization of rapeseed hybrid. Hubei Science Technology, Hubei, pp 167–169

    Google Scholar 

  • Han FP, Fedak G, Guo WL, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGcIR-1a) in newly synthesized wheat allopolyploids. Genetics 170:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944

    Article  CAS  PubMed  Google Scholar 

  • Labrador M, Farre M, Utzet F, Fontdevila A (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol 16:931–937

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li MT, Qian W, Meng JL, Li ZY (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Li MT, Li ZY, Zhang CY, Qian W, Meng JL (2005) Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theor Appl Genet 110:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Li MT, Chen X, Meng JL (2006) Intersubgenomic heterosis in rapeseed production with a partial new typed Brassica napus containing subgenome Ar firom B. rapa and Cc from Brassica carinata. Crop Sci 46:234–242

    Article  CAS  Google Scholar 

  • Liu H (2000) Genetics and breeding in rapeseed. Chinese Agricultural Universitatis, Beijing, pp 144–177

    Google Scholar 

  • Liu R, Qian W, Meng J (2002) Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus x B. campestris). Theor Appl Genet 105:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Article  Google Scholar 

  • Nishio T (2000) Polyploidy and genome analysis of Brassicaceae. Genes Genet Syst 75:360

    Google Scholar 

  • Olsson G (1960) Species crosses within the genus Brassica napus L. II. Artificial Brassica napus L. Hereditas 46:351–396

    Article  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  PubMed  Google Scholar 

  • Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Raut RN (1983) Artificial synthesis of Brassica napus and its prospects as an oilseed crop in India. Indian J Genet 43:191–283

    Google Scholar 

  • Qian W, Liu R, Meng J (2003) Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica 134:9–15

    Article  CAS  Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Sass O, Meng J, Li M, Frauen M, Jung C (2007) Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor Appl Genet 115:27–34

    Article  CAS  PubMed  Google Scholar 

  • Rana D, Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  PubMed  Google Scholar 

  • Ren JP, Dickson MH, Earle ED (2000) Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theor Appl Genet 100:810–819

    Article  Google Scholar 

  • Rohlf FJ (1997) NTSYS-PC 2.1. Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, NY

    Google Scholar 

  • SAS Institute (1999) SAS OnlineDoc (R), version 8.0, Cary, NC, USA

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Sensoz S, Angin D, Yorgun S, Kockar OM (2000) Bio-oil production from an oilseed crop: Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Energy Sources 22:891–899

    Article  CAS  Google Scholar 

  • Seyis F, Friedt W, Luhs W (2006) Yield of Brassica napus L. hybrids developed using resynthesized rapeseed material sown at different locations. Field Crops Res 96:176–180

    Article  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KA (1976) Synthetic amphiploids in breeding—genetic and evolutionary studies in wheat. Basic Life Sci 8:97–102

    CAS  PubMed  Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Wei Qian (Southwest University of China and Dr. Martin Frauen (Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Germany) for their provision of data about the yield performance of the intersubgenomic hybrids bred with 14 lines of the new rapeseed first. We also thank Assoc. Prof. Wallace Cowling (The University of Western Australia) for his critical reading and comments on the manuscript. This work was supported financially by the National Natural Science Foundation of China (project code: 30830073) and the National Basic Research and Development Program (project code: 2007CB109006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Meng.

Additional information

Communicated by H. Becker.

Contribution to the special issue “Heterosis in Plants”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, J., Zhu, J., Huang, S. et al. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica . Theor Appl Genet 120, 283–290 (2010). https://doi.org/10.1007/s00122-009-1201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1201-4

Keywords

Navigation