Skip to main content
Log in

Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142 kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, Gonzalez de León D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Botstein DR, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bruford MW, Wyne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  CAS  PubMed  Google Scholar 

  • Ching A, Caldwell KS, Maurine Dolan JM, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Choukan R, Hossainzadeh A, Ghannadha MR, Warburton ML, Talei AR, Mohammadi SA (2006) Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res 95:212–222

    Article  Google Scholar 

  • CIMMYT Applied Molecular Genetics Laboratory (2003) Laboratory Protocols, 3rd edn. Mexico, D.F, pp 7–11

  • Cooper M, Smith OS, Graham G, Arthur L, Feng L, Podlich DW (2004) Genomics, genetics, and plant breeding: a private sector perspective. Crop Sci 44:1907–1913

    Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isoenzymatic variation in Zea (Gramineae). Syst Bot 9:203–218

    Article  Google Scholar 

  • Dubreuil P, Charcosset A (1998) Genetic diversity within and among populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587

    Article  CAS  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930–2000. In: Smith CW, Betran J, Runge ECA (eds) Corn: origin, history, technology, and production. Wiley, New York, pp 65–97

    Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95:4441–4446

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Sebastian S, Smith S, Cooper M (2006) Temporal trends in SSR allele frequencies associated with long-term selection for yield of maize. Maydica 51:293–300

    Google Scholar 

  • Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85:87–94

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 12:e1367

    Article  CAS  Google Scholar 

  • Hanson MA, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH, Doebley JF (1996) Evolution of anthoryanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143:1395–1407

    CAS  PubMed  Google Scholar 

  • Hilton H, Gaut BS (1998) Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics 150:863–872

    CAS  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371

    Article  CAS  PubMed  Google Scholar 

  • Laval G, San Cristobal M, Chevalet C (2002) Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genet Sel Evol 34:481–507

    Article  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  Google Scholar 

  • McMullen MM, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. Chapter 10. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison

    Google Scholar 

  • Mikel MA, Dudley JW (2006) Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46:1193–1205

    Article  Google Scholar 

  • Palaisa K, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  CAS  PubMed  Google Scholar 

  • Parentoni SN, Magalhães JV, Pacheco CAP, Santos MX, Abadie T, Gama EEG, Guimarães PEO, Meirelles WF, Lopes MA, Vasconcelos MJV, Paiva E (2001) Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica 121:197–208

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rafalski A, Ananiev E (2009) Genetic diversity, linkage disequilibrium and association mapping. In: Bennetzen JL, Hake SC (eds) Handbook of maize: genetics and genomics. Springer, New York, pp 201–219

    Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    CAS  Google Scholar 

  • Reif JC, Warburton ML, Taba S, Hoisington D, Crossa J, Franco J, Xia X, Muminović J, Bohn M, Frisch M, Melchinger AE (2006) Grouping of accessions of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113:177–185

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. In: Studies in genetics VII. University of Texas Publication 7213, Austin

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Smith S (2007) Pedigree background changes in US hybrid maize between 1980 and 2004. Crop Sci 47:1914–1926

    Article  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Smith JSC, Duvick DJ, Smith OS, Cooper M, Feng L (2004) Changes in pedigree backgrounds of Pioneer brand maize hybrids widely grown from 1930 to 1999. Crop Sci 44:1935–1946

    Google Scholar 

  • Song TM, Chen SJ (2004) Long term selection for oil concentration in five maize populations. Maydica 49:9–14

    Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  CAS  PubMed  Google Scholar 

  • Teng WT, Cao QS, Chen YH, Liu XH, Men SD, Jing XQ, Li JS (2004) Analysis of maize heterotic groups and patterns during past decade in China. Agric Sci Chin 3:481–489 (in Chinese)

    Google Scholar 

  • Tracy WF, Chandler MA (2006) The historical and biological basis of the concept of heterotic patterns in Corn Belt Dent maize. In: Lamkey KR, Lee M (eds) Plant breeding: The Arnel R. Hallauer international symposium. Blackwell, Ames, pp 219–233

    Chapter  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez G, Doebley J (2008) Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  Google Scholar 

  • Vroh BI, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Polacco M, Soderlund C, Wing R, Fang Z, Coe EH Jr (2006) Single nucleotide polymorphisms and insertion–deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21

    Article  CAS  Google Scholar 

  • Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Xia XC, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington DA (2002) Genetic characterization of CIMMYT maize inbred lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Warburton ML, Ribaut JM, Franco J, Crossa J, Dubreuil P, Betrán FJ (2005) Genetic characterization of 218 elite CIMMYT inbred maize lines using RFLP markers. Euphytica 142:97–106

    Article  CAS  Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48:617–624

    Article  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Vroh BI, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Xia XC, Reif JC, Hoisington DA, Melchinger AE, Frisch M, Warburton ML (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci 44:2230–2237

    Article  Google Scholar 

  • Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Beck D, Pixley K, Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite US and European maize. Crop Sci 45:2573–2582

    Article  CAS  Google Scholar 

  • Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418

    Article  Google Scholar 

  • Xu Y (2003) Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174

    CAS  Google Scholar 

  • Xu Y, Ishii T, McCouch S (2003) Marker-assisted evaluation of germplasm resources for plant breeding. In: Mew TW, Brar DS, Peng S, Hardy B (eds) Rice science: innovations and impact for livelihood. Proceedings of the 24th international rice research conference, 16–19 September 2002, Beijing, China. International Rice Research Institute, Chinese Academy of Engineering, and Chinese Academy of Agricultural Sciences, Manila, Philippines, pp 213–229

  • Xu Y, Beachell H, McCouch SR (2004) A marker-based approach to broadening the genetic base of rice (Oryza sativa L.) in the US. Crop Sci 44:1947–1959

    Article  Google Scholar 

  • Xu Y, Skinner DJ, Wu H, Palacios-Rojas N, Araus JL, Yan J, Gao S, Warburton ML, Crouch JH (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Int J Plant Genomics 2009:957602. doi:10.1155/2009/957602

    PubMed  Google Scholar 

  • Yamasaki M, Tenaillon MI, Vroh BI, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2009) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed (in press)

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  Google Scholar 

  • Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77

    Article  CAS  Google Scholar 

  • Yuan LX, Fu JH, Zhang SH, Liu XZ, Peng ZB, Li XH, Warburton M, Khairallah M (2001) Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sin 27:149–156

    Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Marilyn Warburton and Rodomiro Ortiz for their critical review and suggestions which much improved the manuscript, Dr. Kevin Pixley for constructive discussion, and Eva Huerta Miranda, Carlos Martinez Flores, Martha Hernandez Rodríguez, Alberto Vergara Alva, Maria Asunción Moreno Ortega, and Jose Simon Pastrana Marias for lab and field assistance. The maize breeding program team from Embrapa (Drs. Paulo Evaristo O. Guimarães, Cleso A.P. Pacheco, and Lauro J.M. Guimarães) provided breeding materials and related information for the 94 Brazilian maize germplasm. This work at CIMMYT is funded by the Rockefeller Foundation, Bill and Melinda Gates Foundation, and European Community, and through other attributed or unrestricted funds provided by the members of the Consultative Group on International Agricultural Research (CGIAR) and national governments of USA, Japan, and UK. The Brazilian research was supported by Embrapa, FAPEMIG, The Generation Challenge Program and The McKnight Foundation—CCRP. Yanli Lu was supported by China Scholarship Council for her research at CIMMYT as a joint PhD student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbi Xu.

Additional information

Communicated by T. Luebberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of 770 maize inbred lines used in the study. Information provided in this supplemental table include ID, brief name, sample name, pedigree, origin, adaptation, kernel color, kernel texture, and the subsets that were used to compare allele frequencies in yellow versus white (Subset 1), dent versus flint (Subset 2) comparisons. (XLS 180 kb)

Table S2

Summary statistics for the 1034 informative SNP markers identified from the 1536 SNP chip. Information provided in this supplemental table include SNP order, SNP index, SNP name, SNP, chromosome, physical position, contig, minor allele frequency, heterozygosity, gene diversity, and polymorphic information content (PIC). Subset A represents 449 high-quality SNPs; Subsets B and C represent 499 and 279 SNP markers after excluding markers that showed allelic frequency difference larger than 10% and 5% between temperate and tropical/subtropical germplasm collections, respectively. (XLS 267 kb)

Table S3

Inbred lines with their proportional memberships in the model-based subgroups determined by STRUCTURE. Eight groups/clusters were identified. Information about membership of inbred lines corresponding to each cluster is provided. (XLS 178 kb)

Fig. S1

A successful score with obvious three clusters as shown by a single nucleotide polymorphism (SNP) marker, PZA00566.5. AA and BB indicate the homozygous clusters, AB indicates heterozygotes. A plot located outside of cluster was regarded as missing. (TIFF 1790 kb)

Fig. S2

Cluster dendrogram constructed for 770 maize inbred lines genotyped with 1034 SNP markers. Two major groups are identified as “China” and “CIMMYT and Brazil”. Six groups are identified within “China” by different colors as SPT, LRC, PA, PB, Lancaster, and BSSS. (TIFF 5065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Yan, J., Guimarães, C.T. et al. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120, 93–115 (2009). https://doi.org/10.1007/s00122-009-1162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1162-7

Keywords

Navigation