Skip to main content
Log in

Genetic structure of Aegilops cylindrica Host in its native range and in the United States of America

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Chloroplast and nuclear microsatellite markers were used to study genetic diversity and genetic structure of Aegilops cylindrica Host collected in its native range and in adventive sites in the USA. Our analysis suggests that Ae. cylindrica, an allotetraploid, arose from multiple hybridizations between Ae. markgrafii (Greuter) Hammer. and Ae. tauschii Coss. presumably along the Fertile Crescent, where the geographic distributions of its diploid progenitors overlap. However, the center of genetic diversity of this species now encompasses a larger area including northern Iraq, eastern Turkey, and Transcaucasia. Although the majority of accessions of Ae. cylindrica (87%) had D-type plastomes derived from Ae. tauschii, accessions with C-type plastomes (13%), derived from Ae. markgrafii, were also observed. This corroborates a previous study suggesting the dimaternal origin of Ae. cylindrica. Model-based and genetic distance-based clustering using both chloroplast and nuclear markers indicated that Ae. tauschii ssp. tauschii contributed one of its D-type plastomes and its D genome to Ae. cylindrica. Analysis of genetic structure using nuclear markers suggested that Ae. cylindrica accessions could be grouped into three subpopulations (arbitrarily named N-K1, N-K2, and N-K3). Members of the N-K1 subpopulation were the most numerous in its native range and members of the N-K2 subpopulation were the most common in the USA. Our analysis also indicated that Ae. cylindrica accessions in the USA were derived from a few founder genotypes. The frequency of Ae. cylindrica accessions with the C-type plastome in the USA (~24%) was substantially higher than in its native range of distribution (~3%) and all C-type Ae. cylindrica in the USA except one belonged to subpopulation N-K2. The high frequency of the C-type plastome in the USA may reflect a favorable nucleo-cytoplasmic combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  PubMed  CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    Article  CAS  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377

    Article  PubMed  CAS  Google Scholar 

  • Chennaveeraiah MS (1960) Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Horti Gotob 23:85–178

    Google Scholar 

  • Dewey S (1996) Jointed goatgrass—an overview of the problem. In: Jenks B (ed) Proceedings of the Pacific Northwest jointed goatgrass conference, Pocatello, Idaho, pp 1–2

  • DiTomaso JM, Heise KL, Hyser GB, Merenlender AM, Keiffer RJ (2001) Carefully timed burning can control barb goatgrass. Calif Agric 55:47–52

    Article  Google Scholar 

  • Donald WW, Ogg AG (1991) Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technol 5:3–17

    CAS  Google Scholar 

  • Dvorak J, Luo M-C, Yang Z-L, Zhang H-B (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Eig A (1929) Monographish-kritische Ubersicht der Gattung Aegilops. Repertorium Specierum Novarum Regni Vegetabilis Beihefte 55:1–228

    Google Scholar 

  • El Bouhssini M, Benlhabib O, Nachit MM, Houari A, Bentika A, Nsarellah N, Lhaloui S (1998) Identification in Aegilops species of resistant sources to Hessian fly (Diptera: Cecidomyiidae) in Morocco. Genet Res Crop Evol 45:343–345

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Farooq S, Iqbal N, Asghar M, Shah TM (1992) Intergeneric hybridization for wheat improvement VI. Production of salt tolerant germplasm through crossing wheat (Triticum aestivum) with Aegilops cylindrica and its significance in practical agriculture. J Genet Plant Breed 46:125–132

    Google Scholar 

  • Gandhi HT, Vales MI, Watson CJ, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111:561–572

    Article  PubMed  CAS  Google Scholar 

  • Gandhi HT, Mallory-Smith CA, Watson CJW, Vales MI, Zemetra RS, Riera-Lizarazu O (2006) Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Sci 54:1073–1079

    Article  CAS  Google Scholar 

  • Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Goryunova SV, Kochieva EZ, Chikida NN, Pukhaskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as reveled by RAPD analysis. Russian J Genet 40:515–523

    Article  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802

    Article  PubMed  CAS  Google Scholar 

  • Iriki N, Kawakami A, Takata K, Kuwabara T, Ban T (2001) Screening relatives of wheat for snow mold resistance and freezing tolerance. Euphytica 122:335–341

    Article  Google Scholar 

  • Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904

    Article  CAS  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Johnson BL (1967) Confirmation of the genome donors of Aegilops cylindrica. Nature 216:859–862

    Article  Google Scholar 

  • Johnston CO, Heyne EG (1960) Distribution of jointed goatgrass (Aegilops cylindrica Host.) in Kansas. Trans Kansas Acad Sci 63:239–242

    Article  Google Scholar 

  • Johnston CO, Parker JH (1929) Aegilops cylindrica Host, wheat fields weed in Kansas. Trans Kansas Acad Sci 32:80–84

    Article  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kennedy PB (1928) Goat grass or wild wheat (Aegilops triuncialis). J Am Soc Agron 20:1292–1296

    Google Scholar 

  • Kihara H, Matsumura S (1941) Genomanalyse bei Triticum und Aegilops. VIII. Rückkreuzung des Bastards A. caudata × A. cylindrica zu den Eltern und seine Nachkommen. Cytologia 11:493–506

    Google Scholar 

  • Kihara H, Tanaka M (1958) Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan and Iran. Preslia 30:241–251

    Google Scholar 

  • Kimber G, Zhao YH (1983) The D genome of the Triticeae. Can J Genet Cytol 25:581–589

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Maan SS (1976) Cytoplasmic homology between Aegilops squarrosa L. and Ae. cylindrica Host. Crop Sci 16:757–761

    Article  Google Scholar 

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    PubMed  CAS  Google Scholar 

  • Mayfield L (1927) Goatgrass-a weed pest of central Kansas wheat fields. Kans Agric Stud 7:40–41

    Google Scholar 

  • Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366

    Article  Google Scholar 

  • Morrison LA, Cremieux LC, Mallory-Smith CA (2002) Infestations of jointed goatgrass (Aegilops cylindrica) and its hybrids with wheat in Oregon wheat fields. Weed Sci 50:737–747

    Article  CAS  Google Scholar 

  • Murai K, Tsunewaki K (1986) Molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. IV. CtDNA variation in Ae. triuncialis. Heredity 57:335–339

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Ogg AG, Seefeldt SS (1999) Characterizing traits that enhance the competitiveness of winter wheat (Triticum aestivum) against jointed goatgrass (Aegilops cylindrica). Weed Sci 47:74–80

    CAS  Google Scholar 

  • Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76:321–322

    Article  CAS  Google Scholar 

  • Ohta S (2000) Genetic differentiation and post-glacial establishment of the geographical distribution in Aegilops caudata L. Genes Genet Syst 75:189–196

    Article  PubMed  CAS  Google Scholar 

  • Ohta S (2001) Variation and geographical distribution of the genotypes controlling the diagnostic spike morphology of two varieties of Aegilops caudata L. Genes Genet Syst 76:305–310

    Article  PubMed  CAS  Google Scholar 

  • Okuno K, Ebana K, Noov B, Yoshida H (1998) Genetic diversity of central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet Res Crop Evol 45:389–394

    Article  Google Scholar 

  • Pester TA, Ward SM, Fenwick AL, Westra P, Nissen SJ (2003) Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Sci 51:287–293

    Article  CAS  Google Scholar 

  • Pestsova EG, Borner A, Roder MS (2001) Development of a set of Triticum aestivumAegilops tauschii introgression lines. Hereditas 135:139–143

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Johnson DE, George MR (1996) Barb goatgrass: a threat to California rangelands. Rangelands 18:8–10

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156:327–339

    PubMed  CAS  Google Scholar 

  • Riley R, Law CN (1965) Genetic variation in chromosome pairing. Adv Genet 13:57–114

    Article  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Slageren MWv (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). ICARDA, Syria and Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M (1983) Geographical distribution of Aegilops species based on collection at the Plant Germplasm Institute, Kyoto University. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto, Japan, pp 1009–1024

  • Tsunewaki K (1996) Plasmon analysis as the counterpart of genome analysis. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press Inc, Boca Raton, FL, USA, pp 271–300

    Google Scholar 

  • Tsunewaki K, Wang G-Z, Matsuoka Y (2002) Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 77:409–427

    Article  PubMed  CAS  Google Scholar 

  • Vanichanon A, Blake NK, Sherman JD, Talbert LE (2003) Multiple origins of allopolyploid Aegilops triuncialis. Theor Appl Genet 106:804–810

    PubMed  CAS  Google Scholar 

  • Wang GZ, Miyashita NT, Tsunewaki K (1997) Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94:14570–14577

    Article  PubMed  CAS  Google Scholar 

  • Wang G-Z, Matsuoka Y, Tsunewaki K (2000) Evolutionary features of chondriome divergence in Triticum (wheat) and Aegilops shown by RFLP analysis of mitochondrial DNAs. Theor Appl Genet 100:221–231

    Article  CAS  Google Scholar 

  • Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  PubMed  CAS  Google Scholar 

  • Zemetra RS, Hansen J, Mallory-Smith CA (1998) Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46:313–317

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from United States Department of Agriculture-National Research Initiative (Grant # 2001-35320-09918). We would like to thank Christy J. W. Watson for her technical assistance. We also thank the United States Department of Agriculture-National Small Grains Collection (USDA-NSGC); Dr. Waines, University of California, Riverside, USA; Dr. P. Westra, Colorado State University, Fort Collins, CO, USA; Dr. Shoji Ohta, Fukui Prefectural University, Japan; the Wheat Genetic Resource Center, Kansas State University, KS, USA; the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria; and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany for providing the germplasm for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Riera-Lizarazu.

Additional information

Communicated by A. Graner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, H.T., Vales, M.I., Mallory-Smith, C. et al. Genetic structure of Aegilops cylindrica Host in its native range and in the United States of America. Theor Appl Genet 119, 1013–1025 (2009). https://doi.org/10.1007/s00122-009-1105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1105-3

Keywords

Navigation