Skip to main content
Log in

Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In weed species, resistance to herbicides inhibiting acetohydroxyacid synthase (AHAS) is often conferred by genetic mutations at one of six codons in the AHAS gene. These mutations provide plants with various levels of resistance to different chemical classes of AHAS inhibitors. Five green foxtail [Setaria viridis (L.) Beauv.] populations were reported in Ontario with potential resistance to the AHAS-inhibiting herbicide imazethapyr. The objectives of this study were to confirm resistance, establish the resistance spectrum for each of the five populations, and determine its genetic basis. Dose response curves were generated for whole plant growth and enzyme activity, and the AHAS gene was sequenced. Resistance was confirmed by determining the resistance factor to imazethapyr in the five resistant green foxtail populations for whole plant dose response experiments (21- to 182-fold) and enzyme assays (15- to 260-fold). All five imazethapyr-resistant populations showed cross-resistance to nicosulfuron and flucarbazone while only three populations had cross-resistance to pyrithiobac. Sequence analyses revealed single base-pair mutations in the resistant populations of green foxtail. These mutations were coded for Thr, Asn, or Ile substitution at Ser653. In addition, a new mutation was found in one population that coded for an Asp substitution at Gly654. There is an agreement between the spectra of resistance observed and the type of resistance known to be conferred by these substitutions. Moreover, it indicates that, under similar selection pressure (imazethapyr), a variety of mutations can be selected for different populations, making the resistance pattern difficult to predict from herbicide exposure history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boutsalis P, Karotam J, Powles SB (1999) Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic Sci 55:507–516

    Article  CAS  Google Scholar 

  • Chang AK, Duggleby RG (1998) Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J 333:765–777

    PubMed  CAS  Google Scholar 

  • Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401–419

    PubMed  CAS  Google Scholar 

  • Chong CK, Choi JD (2002) Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem Biophys Res Commun 279:462–467

    Article  Google Scholar 

  • Croughan TP (2005) Resistance to acetohydroxyacid synthase-inhibiting herbicides. USPTO Patent. PCT no PCT/US99/26062. Louisiana State University and Agricultural and Mechanical College, Baton Rouge

    Google Scholar 

  • Darmency H, Pernès J (1989) Agronomic performance of a triazine resistant foxtail millet (Setaria italica (L.) Beauv. Weed Res 29:147–150

    Article  Google Scholar 

  • Darmency H, Zangre GR, Pernès J (1987) The wild-weed-crop complex in Setaria: a hybridization study. Genetica 75:107–193

    Article  Google Scholar 

  • Dekker J (2003) The foxtail (Setaria) Species-Group. Weed Sci 51:641–656

    Article  CAS  Google Scholar 

  • Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36

    CAS  Google Scholar 

  • Ferguson GM, Hamill AS, Tardif FJ (2001) ALS inhibitor resistance in populations of Powell amaranth and redroot pigweed. Weed Sci 49:448–453

    Article  CAS  Google Scholar 

  • Fristrom JW, Clegg MT (1989) Principles of genetics. WH Freeman, New York

    Google Scholar 

  • Heap I (2009) International survey of herbicide resistant weeds. Online. Internet: http://www.weedscience.com. Accessed 5 March 2009

  • Hidayat I, Preston C (1997) Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic Biochem Physiol 57:137–146

    Article  CAS  Google Scholar 

  • Kawai K, Kaku K, Izawa N, Fukuda A, Tanaka Y, Shimizu T (2007) Functional analysis of transgenic rice plants expressing a novel mutated ALS gene of rice. J Pestic Sci 32:385–392

    Article  CAS  Google Scholar 

  • Lee Y, Chang AK, Duggleby RG (1999) Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452:341–345

    Article  PubMed  CAS  Google Scholar 

  • Marshall R, Moss SR (2008) Characterisation and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Res 48:437–439

    Article  Google Scholar 

  • McCourt JA, Pang SS, Knig-Scott J, Guddat LW, Duggleby RG (2006) Herbicide binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA 103:569–573

    Article  PubMed  CAS  Google Scholar 

  • McNaughton KE, Letarte J, Lee EA, Tardif FJ (2005) Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus L.) and Powell amaranth (A. powelli S. Wats.). Weed Sci 53:17–22

    Article  CAS  Google Scholar 

  • Park KW, Mallory-Smith CA (2004) Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:71–77

    Article  CAS  Google Scholar 

  • Patzoldt WL, Tranel PJ (2007) Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci 55:421–428

    Article  CAS  Google Scholar 

  • Ray TB (1984) Site of action of chlorsulfuron. Plant Physiol 75:827–831

    Article  PubMed  CAS  Google Scholar 

  • Saari LL, Cotterman JC, Thill DC (1994) Resistance to acetolactate synthase inhibiting herbicides. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants biology and biochemistry. Lewis Publishers, Boca Raton, pp 141–170

    Google Scholar 

  • Santel HJ, Bowden BA, Sorensen VM, Mueller KH (1999) Flucarbazone-sodium-a new herbicide for the selective control of wild oat and green foxtail in wheat. In: Proceedings of the 1999 Brighton Conference-Weeds, vol 1. British Crop Protection Council, pp 23–28

  • Sathasivan K, Haughn GW, Murai N (1991) Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia. Plant Physiol 97:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose response relationships. Weed Technol 9:218–227

    Google Scholar 

  • Shaner DL, Singh BK (1997) Acetohydroxyacid synthase inhibitors. In: Roe RM, Burton JD, Khur RJ (eds) Herbicide activity: toxicology, biochemistry and molecular biology. IOS Press, Amsterdam

    Google Scholar 

  • Sibony M, Michel A, Haas HU, Rubin B, Hurle K (2001) Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res 41:509–522

    Article  CAS  Google Scholar 

  • Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700–712

    Article  CAS  Google Scholar 

  • Veldhuis LJ, Hall LM, O’Donovan JT, Dyer W, Hall JC (2000) Metabolism-based resistance of wild mustard (Sinapis arvensis L.) biotype of ethametsulfuron-methyl. J Agric Food Chem 48:2986–2990

    Article  PubMed  CAS  Google Scholar 

  • Whaley CM, Wilson HP, Westwood JH (2007) A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci 55:83–90

    Article  CAS  Google Scholar 

  • Yu Q, Nelson JK, Zheng MQ, Jackson M, Powles SB (2007) Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci 63:918–927

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Han H, Powles SB (2008) Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Natural Science and Engineering Research Council for scholarship to Julie Laplante and Ontario Ministry of Agriculture and Food for financial support through a grant to François J. Tardif. Peter Smith and Chris Grainger are warmly thanked for their expert technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François J. Tardif.

Additional information

Communicated by A. Schulman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laplante, J., Rajcan, I. & Tardif, F.J. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis . Theor Appl Genet 119, 577–585 (2009). https://doi.org/10.1007/s00122-009-1067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1067-5

Keywords

Navigation