Skip to main content
Log in

Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phytic acid is considered as one of the major antinutritional compounds in cereal and legume seeds. The development of lpa (low phytic acid) grains, resulting in increased mineral cation availability, is considered a major goal in the improvement of the nutritional quality of seed crops, especially those largely consumed in developing countries. From a mutagenised population of common bean we isolated a homozygous lpa mutant line (lpa-280-10) showing, compared to wild type, a 90% reduction of phytic acid, a 25% reduction of raffinosaccharides and a much higher amount of free or weakly bound iron cations in the seed. Genetic analysis showed that the lpa character is due to a recessive mutation that segregates in a monogenic, Mendelian fashion. Germination tests performed using varying ageing or stress conditions, clearly showed that the bean line lpa-280-10 has a better germination response than the wild type. These data, together with those obtained from 2 years of agronomic trials showing that the mutant seed yield is close to that of its parents and other evidence, indicate that the new lpa-280-10 mutation might be the first devoid of visible macroscopic negative effects in plants, pods and seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams CL, Hambidge M, Raboy V, Dorsch JA, Sian L, Westcott JL, Krebs NF (2002) Zinc absorption from a low-phytic acid maize. Am J Clin Nutr 76:556–559

    PubMed  CAS  Google Scholar 

  • Aw TL, Swanson BG (1985) Influence of tannin on Phaseolus vulgaris protein digestibility and quality. J Food Sci 50(1):67–71

    Article  CAS  Google Scholar 

  • Baskin CC (1977) Vigour test methods––accelerated aging. AOSA Newsl 51:42–55

    Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Bender AE, Reaidi GB (1982) Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. J Plant Foods 4(1):15–22

    CAS  Google Scholar 

  • Bregitzer PP, Raboy V (2006) Effects of four independent low-phytate mutations on barley (Hordeum vulgare L.) agronomic performances. Crop Sci 46:1318–1322

    Article  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Stöger E, Arcalis E, Pontopidan K, Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition, pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54(13):4624–4632

    Article  PubMed  CAS  Google Scholar 

  • Campion B, Perrone D, Galasso I, Bollini R (2008) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breed. doi:10.1111/j.1439-0523.2008.01569.x

  • Chauhan BM, Mahjan L (1988) Effect of natural fermentation on the extractability of minerals from pearl millet flour. J Food Sci 53:1576–1577

    Article  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17(4):633–643

    Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2005) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  CAS  Google Scholar 

  • Dell’Aquila A, Di Turi M (1996) The germination response to heat and salt stress in evaluating vigour loss in aged wheat seeds. Seed Sci Technol 24:341–346

    Google Scholar 

  • Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PP, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62(5):691–706

    Article  PubMed  CAS  Google Scholar 

  • Duhan A, Khetarpaul N, Bishnoi S (2002) Content of phytic acid and HCl-extractability of calcium, phosphorus and iron as affected by various domestic processing and cooking methods. Food Chem 78:9–14

    Article  CAS  Google Scholar 

  • Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

    Google Scholar 

  • Engle-Stone R, Yeung A, Welch R, Glahn R (2005) Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-Tannic acid complexes. J Agric Food Chem 53:10276–10284

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plant expressing soybean ferritin gene. Transgenic Res 7:173–180

    Article  CAS  Google Scholar 

  • Guttieri MJ, Bowen D, Dorsch JA, Raboy V, Souza E (2004) Identification and characterization of a low phytic acid wheat. Crop Sci 44:418–424

    CAS  Google Scholar 

  • Guttieri MJ, Peterson KM, Souza E (2006) Agronomic performance of a low phytic acid wheat. Crop Sci 46:2623–2629

    Article  CAS  Google Scholar 

  • Hambidge KM, Huffer JW, Raboy V, Grunwald GK, Westcott JL, Sian L, Miller LV, Dorsch JA, Krebs NF (2004) Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids. Am J Clin Nutr 79:1053–1059

    PubMed  CAS  Google Scholar 

  • Hambidge KM, Krebs NF, Westcott JL, Sian L, Miller LV, Peterson KL, Raboy V (2005) Absorption of calcium from tortilla meals prepared from low phytate maize. Am J Clin Nutr 82:84–87

    PubMed  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron; iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146

    Article  CAS  Google Scholar 

  • Linares LB, Broomhead JN, Guaiume EA, Ledoux DR, Veum TL, Raboy V (2006) Effects of low phytate barley (Hordeum vulgare L.) on zinc utilization in young broiler chicks. Poult Sci 86:299–308

    Google Scholar 

  • Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY (2006) Generation and characterisation of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814

    Article  CAS  Google Scholar 

  • Martinez-Torres C, Layrisse M (1971) Iron absorption from veal muscle. Am J Clin Nutr 24:531–540

    PubMed  CAS  Google Scholar 

  • Mazariegos M, Hambidge KM, Krebs NF, Westcott JE, Lei S, Grunwald GK, Campos R, Barahona B, Raboy V, Solomons NW (2006) Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am J Clin Nutr 83:59–64

    PubMed  CAS  Google Scholar 

  • Meis SH, Fehr WR, Schnebly SR (2003) Seed source effect on filed emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci 43:1336–1339

    Google Scholar 

  • Mendoza C, Viteri FE, Lonnerdal B, Young KA, Raboy V, Brown KH (1998) Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. Am J Clin Nutr 68:1123–1128

    PubMed  CAS  Google Scholar 

  • Motto M, Soressi GP, Salamini F (1975) Mutation frequencies and chimeric formation in Phaseolus vulgaris after EMS treatment of dormant seeds. Radiat Bot 15:291–299

    Article  Google Scholar 

  • Norton G, Bliston FA, Bressani R (1985) Biochemical and nutritional attributes of grain legumes. In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 73–114

    Google Scholar 

  • Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consonni G, Nielsen E (2003) Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet 107:980–987

    Article  PubMed  CAS  Google Scholar 

  • Pilu R, Landoni M, Cassani E, Doria E, Nielsen E (2005) The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci 45:2096–2105

    Article  CAS  Google Scholar 

  • Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 14:31–44

    Article  Google Scholar 

  • Raboy V (1990) The biochemistry and genetic of phytic acid synthesis. In: Morre DJ, Boss W, Loewus FA (eds) Inositol metabolism in plants. Alan R. Liss, New York, pp 52–73

    Google Scholar 

  • Raboy V (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Raboy V (2006) Seed phosphorus and the development of low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, Wallingford, pp 111–132

    Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  PubMed  CAS  Google Scholar 

  • Rakhi G, Khetarpau N (1995) Effect of fermentation on HCl-extractability of minerals from rice-defatted soy flour blend. Food Chem 50:419–422

    Google Scholar 

  • Rasmussen SK, Hatzack F (1998) Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analyses. Hereditas 129:355–368

    Google Scholar 

  • Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1985) Dry bean tannins: a review of nutritional implications. J Am Oil Chem Soc 62(3):541–549

    Article  CAS  Google Scholar 

  • Scialabba A, Di Liberto C, Dell’Aquila A (1999) Salt-treatment integrated germination test in the evaluation of Brassica villosa subsp. Drepanensis seed quality. Seed Sci Technol 26:865–870

    Google Scholar 

  • Shi JR, Wang HY, Wu YS, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  PubMed  CAS  Google Scholar 

  • Shi JR, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42(5):708–719

    Article  PubMed  CAS  Google Scholar 

  • Shi JR, Wang HY, Schellin K, Li BL, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotech 8:930–937

    Article  CAS  Google Scholar 

  • Singh SP (1982) A key for identification of different growth habits of Phaseolus vulgaris L. Annu Rep Bean Improv Coop 25:92–95

    Google Scholar 

  • Sparvoli F, Daminati MG, Bollini R (1994) Biochemical and molecular characterisation of a Phaseolus vulgaris mutant lacking the major lectin related seed proteins. Annu Rep Bean Improv Coop 37:110

    Google Scholar 

  • The World Health Report (2002) Quantifying selected major risks to health. Chap 4, p 4. http://www.who.int/whr/2002/chapter4/en/index3.html

  • Tadmor NH, Cohen Y, Harpaz Y (1969) Interactive effects of temperature and osmotic potential on the germination of range plants. Crop Sci 9:771–774

    Google Scholar 

  • Tesoro A, Novakovic J, Thiessen JJ, Spino M (2005) Validated HPLC assay for iron determination in biological matrices based on ferrioxamine formation. J Chromatogr B Analyt Technol Biomed Life Sci 823:177–183

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 64:371–378

    Article  CAS  Google Scholar 

  • Veum TL, Ledoux DR, Raboy V (2007) Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine. J Anim Sci 85:961–971

    Article  PubMed  CAS  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  PubMed  CAS  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S

    PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agr Food Chem 48:3576–3580

    Article  CAS  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Article  Google Scholar 

  • Yuan FJ, Zhao HJ, Ren XL, Zhu SL, Fu XJ, Shu QY (2007) Generation and characterisation of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet 115:945–957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Sonia Mazzamurro for the screening work she carried out during her thesis stage in the E.N. laboratory, to Dr. Antonio Dell’Aquila for his help in germination test analysis and for his comments to the manuscript, and to Dr. Roberto Pilu for helpful discussions. Technical support by Mrs. Gloria Daminati and Mr. Rommel Ocampo Romero Ivan are acknowledged. Dr. Marzia Fileppi was supported by a research grant from CRA. This research was partially supported by Ministry of Agricultural Alimentary and Forest Politics with funds released by C.I.P.E (Resolution 17/2003) to B.C. and F.S. and by Ministry for University and Research (PRIN 2006) to E.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Nielsen.

Additional information

Communicated by D. Lightfoot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2009_975_MOESM1_ESM.doc

Plant materials used in this work and breeding path followed to obtain the “lectin-free + low phytic acid ” bean lines. (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campion, B., Sparvoli, F., Doria, E. et al. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118, 1211–1221 (2009). https://doi.org/10.1007/s00122-009-0975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0975-8

Keywords