Theoretical and Applied Genetics

, Volume 118, Issue 6, pp 1083–1092 | Cite as

Pollen dispersal in sugar beet production fields

  • Henri Darmency
  • Etienne K. Klein
  • Thierry Gestat De Garanbé
  • Pierre-Henri Gouyon
  • Marc Richard-Molard
  • Claude Muchembled
Original Paper

Abstract

Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers’ activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power–law) dependent on the distance from the pollen source. A literature survey confirmed that power–law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild populations and preserving the sustainable utility of the resistant varieties. Whether such a goal is attainable remains an open question and certainly would be worth a large scale experimental study.

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government Printed Office, Washington DCGoogle Scholar
  2. Alibert B, Sellier H, Souvré A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur J Agron 23:195–208CrossRefGoogle Scholar
  3. Andersen NS, Siegismund HR, Meyer V, Jorgensen RB (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp. vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp maritima (L.) Arcangeli. Mol Ecol 14:1391–1405PubMedCrossRefGoogle Scholar
  4. Archimowitsch A (1949) Control of pollination in sugar-beet. Bot Rev 15:613–628CrossRefGoogle Scholar
  5. Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954PubMedCrossRefGoogle Scholar
  6. Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8:1733–1741PubMedCrossRefGoogle Scholar
  7. Bartsch DB, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and swiss chard. Ecol Appl 11:142–147CrossRefGoogle Scholar
  8. Bateman AJ (1947) Contamination of seed crops II. Wind pollination. Heredity 1:235–246CrossRefGoogle Scholar
  9. Boudry P, Mörchen M, Saumitou-Laprade P, Vernet Ph, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478CrossRefGoogle Scholar
  10. Brants I, Buchter-Larsen A, Waters S (1992) Safety assessment of the deliberate release of genetically modified sugar beet. Annual report BRIDGE European Council project CT-910298Google Scholar
  11. Brunet Y, Dupont S, Delage S, Tulet P, Pinty J-P, Lac C, Escobar J (2008) Atmospheric modelling of maize pollen dispersal at regional scale. International conference on implications of GM crop cultivation at large spatial scales, Bremen, http://www.gmls.eu (accessed September 2008)
  12. Chamberlain AC (1967) Cross-pollination between fields of sugar beet. Q J R Meteorol Soc 93:509–515CrossRefGoogle Scholar
  13. Cureton AN, Newbury HJ, Raybould AF, Ford-lloyd BV (2006) Genetic structure and gene flow in wild beet populations: the potential influence of habitat on transgene spread and risk assessment. J Appl Ecol 43:1203–1212CrossRefGoogle Scholar
  14. Dark SOS (1971) Experiments on the cross-pollination of sugar beet in the field. J Natl Inst Agric Bot 12:242–266Google Scholar
  15. Darmency H, Vigouroux Y, Gestat de Garambé T, Richard-Molard M, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosafety Res 6:197–206PubMedCrossRefGoogle Scholar
  16. De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2008) Genetic transformation of the sugar beet plastome. Transgenic Res 18(1):17–30. doi:10.1007/s11248-008-9193-4 PubMedCrossRefGoogle Scholar
  17. Devaux C, Lavigne C, Austerlitz F, Klein E (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Mol Ecol 16:487–499PubMedCrossRefGoogle Scholar
  18. Down EE, Lavis CA (1930) Studies on methods for control of pollination in sugar beets. J Am Soc Agron 22:1–9Google Scholar
  19. Fauchère J, Richard-Molard M, Souverain F, Prats S, Pérarnaud V, Decquiedt B (2003) Cartographie des risques de montées en France en relation avec les températures de printemps et d’été: conséquences sur l’expérimentation et le conseil. Proceedings of the 1st Joint IIRB-ASSBT Congress, San Antonio, pp 189–205Google Scholar
  20. Fénart S, Austerlitz F, Cuguen J, Arnaud JF (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16:3801–3813PubMedCrossRefGoogle Scholar
  21. Ford-Lloyd BV, Hawkes JG (1986) Weed beets: their origin and classification. Acta Hortic 182:399–401Google Scholar
  22. Free JB, Williams IH, Longden PC, Jonhson MG (1975) Insect pollination of sugar beet (Beta vulgaris) seed crops. Ann Appl Biol 81:127–134CrossRefGoogle Scholar
  23. Gliddon CJ, Boudry P, Walker S (1999) Gene flow–a review of experimental evidence. In: Amijee F, Gliddon CJ, Gray AL (eds) Environmental impacts of genetically modified crops. DEFRA, London, pp 65–79Google Scholar
  24. Hornsey KG, Arnold MH (1979) The origins of weed beet. Ann Appl Biol 92:279–285CrossRefGoogle Scholar
  25. Jensen I, Bøgh H (1942) Om forhold der har indflydelse paa krydsningsfaren hos vindbestøvende kultuplanter. Tidsskrift Planteavl 46:138–166Google Scholar
  26. Klein EK, Lavigne C, Picault H, Renard M, Gouyon PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 43:141–151CrossRefGoogle Scholar
  27. Lavigne C, Klein EK, Vallée P, Pierre J, Godelle B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96:886–896CrossRefGoogle Scholar
  28. Lavigne C, Klein EK, Couvet D (2002) Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives. Theor Appl Genet 104:139–145PubMedCrossRefGoogle Scholar
  29. Lavigne C, Klein EK, Mair JF, Le Ber F, Adamczyk K, Monod H, Angevin F (2008) How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape? J Appl Ecol. doi: 10.1111/j.1365-2664.01504.x
  30. Longden PC, Scott RK, Tyldesley JB (1975) Bolting of sugar beet grown in England. Outlook Agric 8:188–193Google Scholar
  31. Madsen KH (1994) Weed management and impact on ecology of growing glyphosate tolerant sugarbeets (Beta vulgaris L.). PhD thesis, Royal Veterinary and Agricultural University, CopenhagenGoogle Scholar
  32. Maletsky SI, Weisman NJ (1978) A population genetic analysis of self- and cross-incompatibility in sugar beet (Beta vulgaris L.). Theor Appl Genet 52:21–28CrossRefGoogle Scholar
  33. May MJ (2004) Weed beet: the hidden menace. Br Sugar Beet Rev 72:18–21Google Scholar
  34. Meier FC, Artschwager E (1938) Airplane collections of sugar-beet pollen. Science 88:507–508PubMedCrossRefGoogle Scholar
  35. Perarnaud V, Souverain F, Prats S, Dequiedt B, Fauchere J, Richard-Molard M (2001). Influence du climat sur le phénomène de montée à graine de la betterave: synthèse. http://www.itbfr.org (accessed November, 2008)
  36. Richard-Molard M, Gestat de Garambé T (1998) Utilisation de variétés tolérantes à un herbicide non sélectif. Conséquences sur le système de culture. Proceedings of the 61st IIRB Congress, pp 269–288Google Scholar
  37. Saeglitz C, Pohl M, Bartsch D (2000) Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol Ecol 9:2035–2040PubMedCrossRefGoogle Scholar
  38. Scott RK (1970) The effect of weather on the concentration of pollen within sugar-beet seed crops. Ann Appl Biol 66:119–127CrossRefGoogle Scholar
  39. Scott RK, Longden PC (1970) Pollen release by diploid and tetraploid sugar-beet plants. Ann Appl Biol 66:129–135CrossRefGoogle Scholar
  40. Sester M, Tricault Y, Darmency H, Colbach N (2008) GeneSys-Beet: a model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Res 107:245–256CrossRefGoogle Scholar
  41. Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975PubMedCrossRefGoogle Scholar
  42. Soukup J, Holec J (2004) Crop-wild interaction within the Beta vulgaris complex: agronomic aspects of weed beet in the Czech Republic. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publishing, Wallingford, pp 203–218Google Scholar
  43. Stewart D, Campbell SC (1952) The dispersion of pollen in sugar beet seed plots. Proceedings of the American Society of Sugar Beet Technologists, 7th general meeting, pp 459–469Google Scholar
  44. Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817PubMedCrossRefGoogle Scholar
  45. Sukopp U, Pohl M, Driessen S, Bartsch D (2005) Feral beets—with help from the maritime wild? In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 45–57Google Scholar
  46. Tyldesley JB (1978) Out-crossing in sugar-beet due to airborne pollen. Agric Meteorol 19:463–469CrossRefGoogle Scholar
  47. Viard F, Arnaud JF, Delescluse M, Cuguen J (2004) Tracing back seed and pollen flow within the crop-wild Beta vulgaris complex: genetic distinctiveness vs. hot spots of hybridization over a regional scale. Mol Ecol 13:1357–1364PubMedCrossRefGoogle Scholar
  48. Vigouroux Y (2000) Betteraves transgéniques et betteraves adventices: étude des flux de gènes et de leurs conséquences. PhD thesis, Université of Burgundy, DijonGoogle Scholar
  49. Vigouroux Y, Darmency H, Gestat De Garambé T, Richard-Molard M (1999) Gene flow between sugar beet and weed beet. In: Lutman PJW (ed) Gene flow and agriculture. Relevance for transgenic crops, British Crop Protection Council, symposium proceedings no. 72, Farnham, pp 83–88Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Henri Darmency
    • 1
  • Etienne K. Klein
    • 2
  • Thierry Gestat De Garanbé
    • 3
    • 4
  • Pierre-Henri Gouyon
    • 5
  • Marc Richard-Molard
    • 3
  • Claude Muchembled
    • 3
  1. 1.UMR 1210 Biologie et Gestion des AdventicesINRADijonFrance
  2. 2.UR 546, Biostatistique et Processus SpatiauxINRAAvignonFrance
  3. 3.Institut Technique de la BetteraveParisFrance
  4. 4.Bayer CropScienceLyon Cedex 09France
  5. 5.Museum d’Histoire NaturelleParisFrance

Personalised recommendations