Theoretical and Applied Genetics

, Volume 118, Issue 1, pp 139–150 | Cite as

Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.)

  • I. Fernandez-Silva
  • I. Eduardo
  • J. Blanca
  • C. Esteras
  • B. Picó
  • F. Nuez
  • P. Arús
  • J. Garcia-Mas
  • Antonio José MonforteEmail author
Original Paper


We report the development of 158 primer pairs flanking SSR motifs in genomic (gSSR) and EST (EST-SSR) melon sequences, all yielding polymorphic bands in melon germplasm, except one that was polymorphic only in Cucurbita species. A similar polymorphism level was found among EST-SSRs and gSSRs, between dimeric and trimeric EST-SSRs, and between EST-SSRs placed in the open reading frame or any of the 5′- or 3′-untranslated regions. Correlation between SSR length and polymorphism was only found for dinucleotide EST-SSRs located within the untranslated regions, but not for trinucleotide EST-SSRs. Transferability of EST-SSRs to Cucurbita species was assayed and 12.7% of the primer pairs amplified at least in one species, although only 5.4% were polymorphic. A set of 14 double haploid lines from the cross between the cultivar “Piel de Sapo” and the accession PI161375 were selected for the bin mapping approach in melon. One hundred and twenty-one SSR markers were newly mapped. The position of 46 SSR loci was also verified by genotyping the complete population. A final bin-map was constructed including 80 RFLPs, 212 SSRs, 3 SNPs and the Nsv locus, distributed in 122 bins with an average bin length of 10.2 cM and a maximum bin length of 33 cM. Map density was 4.2 cM/marker or 5.9 cM/SSR.


Melon Polymorphism Information Content Double Haploid Line Trinucleotide SSRs Joint Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Fuensanta García for technical support. This work was funded in part by grants AGL2006-12780-C02-01, GEN2003-20237-C06-02 [Spanish Ministry of Education and Science and Fondo Europeo de Desarrollo Regional (FEDER, European Union)] and RF2004-00003-00-00 [Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)]. IFS was supported by a fellowship from INIA.

Supplementary material

122_2008_883_MOESM1_ESM.xls (19 kb)
ESM S1. Cucurbita accessions examined for assaying the transferability of melon SSRs with information about their origin and morphotype. Seed sources are: 1. COMAV (Institute for the Conservation and Improvement of the Agrodiversity, Spain); 2. NPGS (National Plant Germplasm System, USA); and 3. IPK (Institute of Plant Genetics and Crop Plant Research, Germany) (XLS 19 kb)
122_2008_883_MOESM2_ESM.xls (10 kb)
ESM S2. Genomic SSRs from Ritschel et al. (2004) assayed (XLS 10 kb)
122_2008_883_MOESM3_ESM.xls (92 kb)
ESM S3. EST-SSRs and gSSRs developed in the current work showing polymorphism in the sets of melon or Cucurbita accessions. MELOGEN EST name and accession number are shown. EST-SSR motif and allele size information were obtained directly from MELOGEN whereas for gSSRs they were obtained from the sequence of the clones obtained from PS enriched genomic libraries. Annealing temperature and [MgCl2] used for PCR amplification are also indicated. Polymorphism information content (PIC) was calculated using eight melon genotypes (Table 1). Bin map position for each marker is indicated as the number of the linkage group followed by the position in the reference map of the last marker of the bin. ECM60 mapped to three different loci indicated as a, b and c. The protein accession with higher homology with the EST found in the Uniref90 database, the significance of the sequence comparison and the organism from where the protein sequence was obtained are also shown. Comprehensive comparisons may be obtained from MELOGEN database ( Abbreviations: NM: not mapped, NA: not available, NS: not polymorphic between Piel de Sapo and Songwhan Charmi (XLS 91 kb)
122_2008_883_MOESM4_ESM.ppt (144 kb)
ESM S4. Bin mapping example. On the left. markers already mapped are indicated in relative order along the linkage group and grouped in bins. Bin definition is indicated by the number of the linkage group followed by the position of the last marker of the bin in the reference map. The genotype of the Double Haploid Lines (DHL) included in the bin-set is also shown. “A” means homozygous for SC allele and “B” homozygous for PS allele. The expected number of recombination points between adjacent bins are indicated in the last column. Two typical situations when mapping a new marker are shown: perfect match, the genotype of the bin-set is identical to one of the bins so the new marker can be placed in an existing bin, and putative bin, the genotype is compatible with a hypothetical bin located between two adjacent bins separated by two or more recombination points (PPT 144 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  3. Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64CrossRefGoogle Scholar
  4. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415PubMedCrossRefGoogle Scholar
  5. Brotman Y, Silberstein L, Kovalski I, Klingler J, Thompson G, Katzir N, Perl-Treves R (2000) Linkage groups of Cucumis melo, including resistance gene homologues and known genes. VII Eucarpia Metting on Cucurbit Genetics and Breeding. Acta Hortic 510:441–448Google Scholar
  6. Caetano-Anollés G, Gresshoff PM (1994) staining nucleic acids with silver: an alternative to radioisotopic and fluorescent labeling. Promega Notes 45:13Google Scholar
  7. Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909CrossRefGoogle Scholar
  8. Chagne D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera MT, Vendramin GG, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–1214PubMedCrossRefGoogle Scholar
  9. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722CrossRefGoogle Scholar
  10. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123PubMedCrossRefGoogle Scholar
  11. Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, Devicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974PubMedCrossRefGoogle Scholar
  12. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  13. Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278:611–622PubMedCrossRefGoogle Scholar
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  15. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132PubMedCrossRefGoogle Scholar
  16. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica 119:39–43CrossRefGoogle Scholar
  17. Eujayl I, Sorrels ME, Baum M, Wolters P, Powel W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407PubMedCrossRefGoogle Scholar
  18. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422PubMedCrossRefGoogle Scholar
  19. Ferriol M, Picó B, Nuez F (2003a) Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers. Genet Resour Crop Evol 50:227–238CrossRefGoogle Scholar
  20. Ferriol M, Picó B, Nuez F (2003b) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  21. Ferriol M, Picó B, Nuez F (2004a) Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J Am Soc Hort Sci 129:60–69Google Scholar
  22. Ferriol M, Picó B, Fernández de Córdoba P, Nuez F (2004b) Molecular diversity of a germplasm collection of squash (Cucurbita moschata) with SRAP and AFLP markers. Crop Sci 44:653–664Google Scholar
  23. Ferriol M, Picó B, Nuez F (2007) Genetic diversity of Cucurbita spp in the Canary islands: a bridge between America and Europe. In: Bullita S (ed) Plant genetic resources of geographical and other islands. Conservation evaluation and use for plant breeding. Proceedings of XVII Eucarpia Gen Res Sect Meeting. Castelsardo, Italy, pp 33–40Google Scholar
  24. Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312PubMedCrossRefGoogle Scholar
  25. Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hort Sci Biotech 82:330–334Google Scholar
  26. Gadaleta A, Manzini G, Mulè G, Blanco A (2006) Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica 153:73–85CrossRefGoogle Scholar
  27. Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261CrossRefGoogle Scholar
  28. Ghebretinsae AG, Barber MT, Barber JC (2007) Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). Am J Bot 94:1256–1266CrossRefGoogle Scholar
  29. Goldstein DB, Clark AG (1995) Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res 23:3882–3886PubMedCrossRefGoogle Scholar
  30. Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet (in press). doi: 10.1007/s00122-008-0750-2
  31. Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306. doi: 10.1186/1471-2164-8-306
  32. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811PubMedCrossRefGoogle Scholar
  33. Grist SA, Figaira FA, Morley AA (1993) Dinucleotide repeat polymorphisms isolated by the polymerase chain reaction. BioTechniques 15:304–309PubMedGoogle Scholar
  34. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom 270:315–323CrossRefGoogle Scholar
  35. Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genom 272:308–327CrossRefGoogle Scholar
  36. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  37. Huang S, Du Y, Wang X, Gu X, Xie B, Zhang Z, Wang J, Li R, Li S, Ren Y, Wang J, Yang H, Jin W, Fei Z, Kilian A, Staub JE, van der Vossen E, Li G (2008) The Cucumber Genome Initiative-an international effort to unlock the genetic potential of an orphan crop using novel genomic technology. Plant Animal Genomes XVI Conference. htpp://
  38. Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of wild plant Arabidopsis thaliana. Genetics 146:1441–1452PubMedGoogle Scholar
  39. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  40. Katzir N, Tadmor Y, Tzuri G, Leshzeshen E, Mozes-Daube N, Danin-Poleg Y, Paris HS (2000) Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. Acta Hortic 510:433–439Google Scholar
  41. Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural population. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  42. Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007PubMedCrossRefGoogle Scholar
  43. Li YC, Röder MS, Fahima T, Kirzhner V, Beiles A, Korol AB, Nevo E (2002) Genetic effects on SSR variation in a natural population of wild emmer wheat, Triticum dicoccoides in Yehudiyya microsite, Israel. Heredity 89:127–132PubMedCrossRefGoogle Scholar
  44. Liou PC, Chang YM, Hsu WS, Cheng YH, Chang HR, Hsiao CH (1998) Construction of a linkage map in Cucumis melo (L.) using random amplified polymorphic DNA markers. International symposium on biotechnology of tropical and subtropical species. Acta Hortic 461:123–132Google Scholar
  45. Liu K, Muse SV (2005) Powermarker: integrated analysis enviroment for genetic marker data. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  46. Loridon K, Cournoyer B, Goubely C, Depeiges A, Picard G (1998) Length polymorphism and allele structure of trinucleotide microsatellites in natural accessions of Arabidopsis thaliana. Theor Appl Genet 97:591–604CrossRefGoogle Scholar
  47. McMurray CT (1995) Mechanisms of DNA expansion. Chromosoma 104:2–13PubMedGoogle Scholar
  48. Monforte AJ, Garcia-Mas J, Arús P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:153–157CrossRefGoogle Scholar
  49. Moreno E, Obando J, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602PubMedCrossRefGoogle Scholar
  50. Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44Google Scholar
  51. Nei M (1973) Análisis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  52. Oliver M, Garcia-Mas J, Cardus M, Pueyo N, López-Sese AL, Arroyo M, Gomez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference Linkage map for melon. Genome 44:836–845PubMedCrossRefGoogle Scholar
  53. Panaud O, Chen X, McCouch SR (1995) Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome 38:1170–1176PubMedGoogle Scholar
  54. Périn C, Hagen S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034PubMedCrossRefGoogle Scholar
  55. Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Forster J, Leon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660CrossRefGoogle Scholar
  56. Pitrat M, Hanelt P, Hammer K (2000) Some comments on intraspecific classification of cultivars of melon. Acta Hort 510:29–36Google Scholar
  57. Ritschel PS, Lins TCL, Tristan RL, Buso GSC, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9. doi: 10.1186/1471-2229-4-9
  58. Rossetto M, McNally J, Henry RJ (2002) Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet 104:61–66PubMedCrossRefGoogle Scholar
  59. Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283–1294PubMedCrossRefGoogle Scholar
  60. Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  61. Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW, Tobutt KR, Monfort A (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127PubMedCrossRefGoogle Scholar
  62. Schug M, Hutter C, Wetterstrand K, Gaudette M, Mackay T, Aquadro CF (1998) The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol 15:1751–1760PubMedGoogle Scholar
  63. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  64. Tang JF, Gao LF, Cao YS, Jia JZ (2006) Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica 151:1–87CrossRefGoogle Scholar
  65. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  66. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  67. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  68. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  69. Van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718PubMedCrossRefGoogle Scholar
  70. Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420PubMedGoogle Scholar
  71. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  72. Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798CrossRefGoogle Scholar
  73. Weber JL (1990) Informativeness of human (dC-dA)n(dG-dT)n polymorphisms. Genomics 7:524–530PubMedCrossRefGoogle Scholar
  74. Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Cardle L, Ramsay L, Gibby M, Powell W (2003) Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium. Mol Ecol Notes 3:287–290CrossRefGoogle Scholar
  75. Yeh FC, Yang R-C, Boyle TBJ, Ye Z-H, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. Available at

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • I. Fernandez-Silva
    • 1
  • I. Eduardo
    • 1
  • J. Blanca
    • 2
  • C. Esteras
    • 2
  • B. Picó
    • 2
  • F. Nuez
    • 2
  • P. Arús
    • 1
  • J. Garcia-Mas
    • 1
  • Antonio José Monforte
    • 1
    • 3
    Email author
  1. 1.IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB (CRAG)CabrilsSpain
  2. 2.Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV)ValenciaSpain
  3. 3.Instituto Celular y Molecular de Plantas (IBMCP) CSIC-UPV, Ciudad Politécnica de la Innovación Ed. 8EValenciaSpain

Personalised recommendations