Theoretical and Applied Genetics

, Volume 117, Issue 2, pp 261–272 | Cite as

Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley

  • Arnis Druka
  • Elena Potokina
  • Zewei Luo
  • Nicola Bonar
  • Ilze Druka
  • Ling Zhang
  • David F. Marshall
  • Brian J. Steffenson
  • Timothy J. Close
  • Roger P. Wise
  • Andris Kleinhofs
  • Robert W. Williams
  • Michael J. Kearsey
  • Robbie Waugh
Original Paper

Abstract

We previously mapped mRNA transcript abundance traits (expression-QTL or eQTL) using the Barley1 Affymetrix array and ‘whole plant’ tissue from 139 progeny of the Steptoe × Morex (St/Mx) reference barley mapping population. Of the 22,840 probesets (genes) on the array, 15,987 reported transcript abundance signals that were suitable for eQTL analysis, and this revealed a genome-wide distribution of 23,738 significant eQTLs. Here we have explored the potential of using these mRNA abundance eQTL traits as surrogates for the identification of candidate genes underlying the interaction between barley and the wheat stem rust fungus Puccinia graminis f. sp. tritici. We re-analysed quantitative ‘resistance phenotype’ data collected on this population in 1990/1991 and identified six loci associated with barley’s reaction to stem rust. One of these coincided with the major stem rust resistance locus Rpg1, that we had previously positionally cloned using this population. Correlation analysis between phenotype values for rust infection and mRNA abundance values reported by the 22,840 GeneChip probe sets placed Rpg1, which is on the Barley1 GeneChip, in the top five candidate genes for the major QTL on chromosome 7H corresponding to the location of Rpg1. A second co-located with the rpg4/Rpg5 stem rust resistance locus that has been mapped in a different population and the remaining four were novel. Correlation analyses identified candidate genes for the rpg4/Rpg5 locus on chromosome 5H. By combining our data with additional published mRNA profiling data sets, we identify a putative sensory transduction histidine kinase as a strong candidate for a novel resistance locus on chromosome 2H and compile candidate gene lists for the other three loci.

Supplementary material

122_2008_771_MOESM1_ESM.pdf (289 kb)
Fig. S1 Interval mapping of the PC3 rust infection phenotype and transcript abundance of the two Hsp17 gene family members across all seven chromosomes. Vertical arrows show the positions of Hsp17 (one of the family members) and dRsmMx (resistance to BSMV) genes. (PDF 290 kb)
122_2008_771_MOESM2_ESM.pdf (237 kb)
Fig. S2 Association of the PC4 stem rust infection phenotype with eQTL of ADF6 and COR413-PM1. QTL scans across the markers mapped to chromosome 5H using the Interval Mapping function are shown. (PDF 237 kb)
122_2008_771_MOESM3_ESM.pdf (559 kb)
Fig. S3 Interval mapping of the mRNA abundance of the genes underlying eight probe sets identified by Zhang et al. (2006). (PDF 559 kb)
122_2008_771_MOESM4_ESM.pdf (401 kb)
Fig. S4 Interval mapping of IT2 phenotype. a Phenotypic scores from all 150 SM DHL were used. b Only lines that have the Steptoe allele at the dRpg1 locus (Rpg1) were used for mapping IT2. c Only lines that have Morex allele at the dRpg1 locus (rpg1) were used for mapping IT2. (PDF 402 kb)
122_2008_771_MOESM5_ESM.doc (283 kb)
Table S1 (DOC 283 kb)
122_2008_771_MOESM6_ESM.doc (168 kb)
Table S2 (DOC 169 kb)
122_2008_771_MOESM7_ESM.doc (492 kb)
Table S3 (DOC 493 kb)
122_2008_771_MOESM8_ESM.doc (66 kb)
Table S4 (DOC 67 kb)
122_2008_771_MOESM9_ESM.doc (54 kb)
Table S5 (DOC 54 kb)

References

  1. Badigannavar AM, Kale DM, Eapen S, Murty GS (2002) Inheritance of disease lesion mimic leaf trait in groundnut. J Hered 93:50–52PubMedCrossRefGoogle Scholar
  2. Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379PubMedCrossRefGoogle Scholar
  3. Bonfield JK, Smith K, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999PubMedCrossRefGoogle Scholar
  4. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333PubMedCrossRefGoogle Scholar
  5. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der LT, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedCrossRefGoogle Scholar
  6. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232PubMedCrossRefGoogle Scholar
  7. Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW (2003) Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1:343–357PubMedCrossRefGoogle Scholar
  8. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242PubMedCrossRefGoogle Scholar
  9. Cho S, Garvin DF, Muehlbauer GJ (2005) Transcriptome analysis and physical mapping of barley genes in wheat–barley chromosome addition lines. Genetics 172:1277–1285PubMedCrossRefGoogle Scholar
  10. Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632PubMedCrossRefGoogle Scholar
  11. Damerval C, Maurice A, Josse JM, De Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301PubMedGoogle Scholar
  12. Davidson SM, Loones MT, Duverger O, Morange M (2002) The developmental expression of small HSP. Prog Mol Subcell Biol 28:103–128PubMedGoogle Scholar
  13. Day T, Greenfield SA (2003) A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp Brain Res 153:334–342PubMedCrossRefGoogle Scholar
  14. Decook R, Lall S, Nettleton D, Howell SH (2005) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172:1155–1164PubMedCrossRefGoogle Scholar
  15. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nat Genet 39:1202–1207PubMedCrossRefGoogle Scholar
  16. Druka A, Kudrna D, Han F, Kilian A, Steffenson B, Frisch D, Tomkins J, Wing R, Kleinhofs A (2000) Physical mapping of the barley stem rust resistance gene rpg4. Mol Gen Genet 264:283–290PubMedCrossRefGoogle Scholar
  17. Druka A, Rostoks N, Whitelaw C, Brueggeman R, Zhang L, Kleinhofs A (2004) Comparative sequence analysis of the barley chromosome 7 (5HL) rpg4 region and a syntenous rice chromosome 3 region. Plant and animal genomes XII conference, p 344. http://www.intl-pag.org/12/abstracts/P5a_PAG12_344.html
  18. Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6:202–211PubMedCrossRefGoogle Scholar
  19. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  20. de Haan G, Gerrits A, Bystrykh L (2006) Modern genome-wide genetic approaches to reveal intrinsic properties of stem cells. Curr Opin Hematol 13:249–253PubMedCrossRefGoogle Scholar
  21. Haussuhl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722PubMedCrossRefGoogle Scholar
  22. Hayes P, Szucs P (2006) Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci USA 103:18385–18386PubMedCrossRefGoogle Scholar
  23. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369PubMedCrossRefGoogle Scholar
  24. Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105PubMedCrossRefGoogle Scholar
  25. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253PubMedCrossRefGoogle Scholar
  26. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15PubMedCrossRefGoogle Scholar
  27. Jordan MC, Somers DJ, Banks TW (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 5:442–453PubMedCrossRefGoogle Scholar
  28. Jung YH, Rakwal R, Agrawal GK, Shibato J, Kim JA, Lee MO, Choi PK, Jung SH, Kim SH, Koh HJ, Yonekura M, Iwahashi H, Jwa NS (2006) Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J Proteome Res 5:2586–2598PubMedCrossRefGoogle Scholar
  29. Kelleher DJ, Gilmore R (1997) DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA 94:4994–4999PubMedCrossRefGoogle Scholar
  30. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 25:2255–2266PubMedCrossRefGoogle Scholar
  31. Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T (1995) Rice–barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res 23:2729–2733PubMedCrossRefGoogle Scholar
  32. Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195PubMedCrossRefGoogle Scholar
  33. Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics 169:2295–2303PubMedCrossRefGoogle Scholar
  34. Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips R, Vasil I (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 187–199Google Scholar
  35. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  36. Kliebenstein DJ, West MA, van Leeuwen H, Loudet O, Doerge RW, St Clair DA (2006) Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics 7:308PubMedCrossRefGoogle Scholar
  37. Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449PubMedCrossRefGoogle Scholar
  38. Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110(Pt 13):1431–1440PubMedGoogle Scholar
  39. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey M (2007) SFP genotyping from Affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176:789–800PubMedCrossRefGoogle Scholar
  40. Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334PubMedCrossRefGoogle Scholar
  41. Mariappan D, Winkler J, Parthiban V, Doss MX, Hescheler J, Sachinidis A (2006) Dietary small molecules and large-scale gene expression studies: an experimental approach for understanding their beneficial effects on the development of malignant and non-malignant proliferative diseases. Curr Med Chem 13:1481–1489PubMedCrossRefGoogle Scholar
  42. Matthews DB, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffmann PL, Lu L, McWeeney S, Miles MF, Tabakoff B, Williams RW (2005) Complex genetics of interactions of alcohol and CNS function and behaviour. Alcohol Clin Exp Res 29:1706–1719PubMedCrossRefGoogle Scholar
  43. Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144:1132–1143PubMedCrossRefGoogle Scholar
  44. Miller JD, Lambert JW (1965) Variability and inheritance of reaction of barley to race l5B of stem rust. Aqron J 47:373–377Google Scholar
  45. Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E (1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17:667–678PubMedCrossRefGoogle Scholar
  46. Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176PubMedCrossRefGoogle Scholar
  47. Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol 13:6367–6374PubMedGoogle Scholar
  48. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A (2006) Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci USA 103:7518–7523PubMedCrossRefGoogle Scholar
  49. Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, Nishimoto T, Shibata Y (1999) Abnormalities of developmental cell death in Dad1-deficient mice. Genes Cells 4:243–252PubMedCrossRefGoogle Scholar
  50. Noutoshi Y, Kuromori T, Wada T, Hirayama T, Kamiya A, Imura Y, Yasuda M, Nakashita H, Shirasu K, Shinozaki K (2006) Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol Biol 62:29–42PubMedCrossRefGoogle Scholar
  51. Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11PubMedGoogle Scholar
  52. Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794PubMedCrossRefGoogle Scholar
  53. Ouellet F, Carpentier E, Cope MJ, Monroy AF, Sarhan F (2001) Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiol 125:360–368PubMedCrossRefGoogle Scholar
  54. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG, Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen A, Rayner T, Rocca-Serra P, Sharma A, Sansone S, Brazma A (2005) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555PubMedCrossRefGoogle Scholar
  55. Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2007) eQTL analysis of 16,000 barley genes reveals a complex pattern of genome wide transcriptional regulation. Plant J (in press)Google Scholar
  56. Rostoks N, Schmierer D, Kudrna D, Kleinhofs A (2003) Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theor Appl Genet 107:1094–1101PubMedCrossRefGoogle Scholar
  57. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006a) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661PubMedCrossRefGoogle Scholar
  58. Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006b) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 275:159–168PubMedCrossRefGoogle Scholar
  59. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  60. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717PubMedCrossRefGoogle Scholar
  61. Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667PubMedCrossRefGoogle Scholar
  62. Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics 8:22PubMedCrossRefGoogle Scholar
  63. Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366PubMedCrossRefGoogle Scholar
  64. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA Agricultural Research Service Bulletin. Vol 617Google Scholar
  65. Steffenson BJ, Miller JD, Jin Y (1993) Detection of stem rust resistance gene Rpg1 in barley seedlings. Plant Dis 77:626–629Google Scholar
  66. Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341PubMedCrossRefGoogle Scholar
  67. Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Dept of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  68. Welsh MJ, Gaestel M (1998) Small heat-shock protein family: function in health and disease. Ann NY Acad Sci 851:28–35PubMedCrossRefGoogle Scholar
  69. West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450PubMedCrossRefGoogle Scholar
  70. Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582PubMedCrossRefGoogle Scholar
  71. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216PubMedCrossRefGoogle Scholar
  72. Xu W, Stamnes M (2006) The actin-depolymerizing factor homology and charged/helical domains of drebrin and mAbp1 direct membrane binding and localization via distinct interactions with actin. J Biol Chem 281:11826–11833PubMedCrossRefGoogle Scholar
  73. Yaguchi H, Togawa K, Moritani M, Itakura M (2005) Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL. Genomics 85:591–599PubMedCrossRefGoogle Scholar
  74. Yamada T, Takatsu Y, Kasumi M, Marubashi W, Ichimura K (2004) A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals is down-regulated prior to the onset of programmed cell death. J Plant Physiol 161:1281–1283PubMedCrossRefGoogle Scholar
  75. Yulug IG, See CG, Fisher EM, Ylug IG (1995) The DAD1 protein, whose defect causes apoptotic cell death, maps to human chromosome 14. Genomics 26:433–435PubMedCrossRefGoogle Scholar
  76. Zhang L, Fetch T, Nirmala J, Schmierer D, Brueggeman R, Steffenson B, Kleinhofs A (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113:847–855PubMedCrossRefGoogle Scholar
  77. Zhou F, Kurth J, Wei F, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13:337–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Arnis Druka
    • 1
  • Elena Potokina
    • 2
  • Zewei Luo
    • 2
  • Nicola Bonar
    • 1
  • Ilze Druka
    • 1
    • 3
  • Ling Zhang
    • 4
  • David F. Marshall
    • 1
  • Brian J. Steffenson
    • 5
  • Timothy J. Close
    • 6
  • Roger P. Wise
    • 7
  • Andris Kleinhofs
    • 4
  • Robert W. Williams
    • 8
  • Michael J. Kearsey
    • 2
  • Robbie Waugh
    • 1
  1. 1.Genetics ProgrammeScottish Crop Research InstituteDundeeUK
  2. 2.School of BiosciencesUniversity of BirminghamBirminghamUK
  3. 3.School of Computing and Creative TechnologiesUniversity of AbertayDundeeUK
  4. 4.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  5. 5.Department of Plant PathologyUniversity of MinnesotaSt PaulUSA
  6. 6.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  7. 7.Corn Insects and Crop Genetics Research, USDA-ARS and Department of Plant PathologyIowa State UniversityAmesUSA
  8. 8.Department of Anatomy and NeurobiologyUniversity of TennesseeMemphisUSA

Personalised recommendations