Skip to main content
Log in

Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice

  • Original paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

QTLs for partial resistance to Rice yellow mottle virus (RYMV) in rice were mapped in two populations of doubled-haploid lines (DHLs) and recombinant inbred lines (RILs) derived from the same cross but evaluated for different resistance criteria (virus content and symptom severity). An integrative map was used to compare the two genetic maps and a global analysis of both populations was performed. Most of the QTLs previously identified in DHL population were confirmed with increased significance and precision. As many recent studies evidenced the role of eukaryotic translation initiation factors (eIF) of 4E and 4G families in plant susceptibility to RNA viruses, we checked if these genes co-locate with QTLs of resistance to RYMV. Their systematic in silico identification was carried out on the rice genome and their physical locations were compared to QTL positions on the integrative map. In order to confirm or not the co-locations observed, the analysis was completed by evaluation of near-isogenic lines, QTL fine mapping and sequencing of candidate genes. Three members from eIF4G family could be retained as reliable candidates whereas eIF4E genes, commonly found to govern resistances in other plant/virus interactions, were discarded. Together with the recent identification of an eIF(iso)4G as a major resistance gene, data suggests an important role of genes from eIF4G family in rice resistance to RYMV but does not exclude the contribution of factors different from the translation initiation complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquière A (2001) Genetic basis and mapping of the resistance to Rice Yellow Mottle Virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103:1084–1092

    Article  CAS  Google Scholar 

  • Albar L, Lorieux M, Ahmadi N, Rimbault I, Pinel A, Sy A, Fargette D, Ghesquiere A (1998) Genetic basis and mapping of the resistance to Rice yellow mottle virus. I. QTLs identification and relationship between resistance and plant morphology. Theor Appl Genet 97:1145–1154

    Article  CAS  Google Scholar 

  • Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop M-N, Jones M, Ghesquiere A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47:417–426

    Article  PubMed  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil-Tranchant C, Ahmadi N, Courtois B, Lorieux M, McCouch SR, Glaszman JC, Ghesquière A (2005) New resources and integrated map for IR64 × Azucena, a reference population in rice. Poster presented to generation challenge programme 2005 annual research meeting Sept 29th–Oct 1st, Roma, Italy

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Polacco M, Chen S, Schroeder S, Hancock D, Sanchez H, Coe E (2003) cMap: the comparative genetic map viewer. Bioinformatics 19:416–417

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fujisaki K, Hagihara F, Azukawa Y, Kaido M, Okuno T, Mise K (2004) Identification and characterization of the SSB1 locus involved in symptom development by Spring beauty latent virus infection in Arabidopsis thaliana. Mol Plant Microbe Interact 17:967–975

    Google Scholar 

  • Ghesquiere A, Albar L, Lorieux M, Ahmadi N, Fargette D, Huang N, McCouch SR, Notteghem JL (1997) A major quantitative trait locus for Rice yellow mottle virus resistance maps to a cluster of blast resistance genes on chromosome 12. Phytopathology 87:1243–1249

    Article  CAS  Google Scholar 

  • Glaszmann JC (1987) Isozyme and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  Google Scholar 

  • Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224

    Article  Google Scholar 

  • Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Huang N, Parco A, Mew T, Magpantay G, McCouch SR, Guiderdoni E, Xu J, Subudhi P, Angeles ER, Khush GS (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105–113

    Article  CAS  Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    Article  PubMed  CAS  Google Scholar 

  • Kang B-C, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Article  PubMed  CAS  Google Scholar 

  • Kouassi NK, N’Guessan P, Albar L, Fauquet CM, Brugidou C (2005) Distribution and characterization of Rice yellow mottle virus: a threat to African farmers. Plant Dis 89:124–133

    Article  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucl Acids Res 34: 257–260

    Article  Google Scholar 

  • Luo ZW, Wu C-I, Kearsey MJ (2002) Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 161:915–929

    PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Mendell JT, Medghalchi SM, Lake RG, Noensie EN, Dietz HC (2000) Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol Cell Biol 20:8944–8957

    Article  PubMed  CAS  Google Scholar 

  • Ndjiondjop MN, Albar L, Fargette D, Fauquet C, Ghesquière A (1999) The genetic basis of high resistance to Rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Dis 83:931–935

    Article  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Ponting CP (2000) Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem Sci 25:423–426

    Article  PubMed  CAS  Google Scholar 

  • Pressoir G, Albar L, Ahmadi N, Rimbault I, Lorieux M, Fargette D, Ghesquiere A (1998) Genetic basis and mapping of the resistance to Rice yellow mottle virus. II. Evidence of a complementary epistasis between two QTLs. Theor Appl Genet 97:1155–1161

    Article  CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803

    PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Sawkins MC, Farmer AD, Hoisington D, Sullivan J, Tolopko A, Jiang Z, Ribaut JM (2004) Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol Biol 56:465–480

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the GENOPLANTE program TRANSVIR. Arnaud Boisnard was supported by a fellowship from the French Ministry of Research and Deless Thiémélé by a fellowship from the French-speaking University network (AUF). We gratefully acknowledge Thierry Mathieu and Sophie Perez for plant care and Nour Ahmadi for having provided us genotypes data of RIL population. Stéphane Jouannic’s help with protein sequence alignment and phylogenetic tree was greatly appreciated. We thank Romain Guyot and Mathias Lorieux for critical reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Albar.

Additional information

Communicated by Y. Xue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisnard, A., Albar, L., Thiéméle, D. et al. Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice. Theor Appl Genet 116, 53–62 (2007). https://doi.org/10.1007/s00122-007-0646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0646-6

Keywords

Navigation