Skip to main content

Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.)

Abstract

Bean golden yellow mosaic virus (BGYMV) is a whitefly-transmitted geminivirus of the Begomovirus family that causes important yield losses to common beans grown in tropical and sub-tropical countries of Latin America and the Caribbean. A major resistance gene that has been widely deployed in this region is the recessive locus bgm-1 that prevents the development of severe yellowing typical of the disease. In this study, we developed a co-dominant sequence-characterized amplified region (SCAR) marker, SR2, based on a previously identified random amplified polymorphic DNA (RAPD) marker that is tightly linked to the bgm-1 resistance gene and identified the position of the locus in the common bean genome through comparative mapping using two genetic maps for the species. The SR2 marker was mapped relative to bgm-1 in a segregating population of recombinant inbred lines developed from the resistant × susceptible cross of DOR476 × SEL1309. Polymorphism was shown to be based on a 37 bp insertion event in the SR2 allele associated with susceptibility compared to the allele associated with resistance and the marker mapped at a distance of 7.8 cM from the resistance gene. The SR2 marker was significantly associated with overall disease symptoms and with three of the four symptoms associated with the disease (yellowing or chlorosis, flower abortion, foliar deformation) in a greenhouse trial in Colombia with the mechanically transmissible BGYMV–Guatemala strain. In both the DOR364 × G19833 and BAT93 × Jalo EEP558 mapping populations, SR2 was located near the end of linkage group b03 (chromosome 5) suggesting a sub-telomeric position. The position of the bgm-1 resistance gene was estimated to be close to that of bc-1, a strain-specific resistance gene for Bean common mosaic virus (BCMV), based on linkage of SR2 with the SCAR marker SBD5 in the DOR364 × G19833 mapping population. The implications of linkage between these two recessive resistance genes are discussed, as this is the first association between resistance genes against both a begomovirus and a potyvirus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acevedo M, Molina A, Angel JC, Muñoz C, Beaver J (2004) Inheritance of normal pod development in bean golden yellow mosaic resistant common bean. J Am Soc Hort Sci 129:549–552

    Google Scholar 

  2. Afanador LK, Haley SD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean. Ann Rept Bean Improv Coop 35: 10–11

    Google Scholar 

  3. Anderson PK, Hamon AB, Hernández MP, Martin J (2005) Reproductive crop hosts of Bemisia tabaci (Gennadius) in Latin America and the Caribbean. In: Anderson, PK, Morales FJ (eds) Whitefly and whitefly-borne viruses in the tropics: building a knowledge base for global action, Centro Internacional de Agricultura Tropical (CIAT), Cali, pp 243–250 (CIAT publication no. 341)

  4. Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Aranud-Santana E, Coyne DP (2003) Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Res 82:87–102

    Article  Google Scholar 

  5. Beebe S (1994) Búsqueda de resistencia genética a BGMV en fríjol común, historia y perspectivas. In: Morales FJ (ed) Bean golden mosaic: research advances, Centro Internacional de Agricultura Tropical (CIAT), Cali

  6. Beebe SE, Ochoa I, Skroch P, Nienhuis J, Tivang J (1995) Genetic diversity among common bean breeding lines developed for Central America. Crop Sci 35:1178–1183

    Article  Google Scholar 

  7. Blair MW, Basset MJ, Hiebert E, Polston JE, McMillan RT, Graves, Lamberts M (1995) Occurrence of bean golden mosaic virus in Florida. Plant Dis 79:529–533

    Article  Google Scholar 

  8. Blair MW, Beaver J (1993) Inheritance of bean golden mosaic resistance from bean genotype A429. Ann Rept Bean Improv Coop 36:143–144

    Google Scholar 

  9. Blair MW, Beaver JS, Adames C (1993) Inheritance of the dwarfing response to bean golden mosaic virus infection in dry beans. Ann Rept Bean Improv Coop 36:144–145

    Google Scholar 

  10. Blair MW, Beaver J, Rosas J (1994) Heritability of field resistance to bean golden mosaic virus in dry bean (Phaseolus vulgaris L.). In: Morales FJ (ed) Bean golden mosaic: research advances, Centro Internacional de Agricultura Tropical (CIAT), Cali

  11. Blair MW, Garris AJ, Iyer AS, Chapman B, Kresovich S, McCouch SR (2003a) High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet 107:62–73

    Article  CAS  Google Scholar 

  12. Blair MW, Pedraza F, Buendía HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003b) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  Google Scholar 

  13. Blair MW, Muñoz C, Garza R, Cardona C (2006a) Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theor Appl Genet 112:913–923

    Article  CAS  Google Scholar 

  14. Blair MW, Nin JC, Prophete E, Singh SP, Beaver JS (2006b) Registration of two bean golden yellow mosaic virus resistant, large red-mottled common bean germplasm. Crop Sci 46:1000–1001

    Article  Google Scholar 

  15. Erdmann PM, Lee RK, Bassett MJ, McClean PE (2002) A molecular marker tightly linked to P, a gene required for flower and seed coat color in common bean (Phaseolus vulgaris L.), contains the Ty3-gypsy retrotransposon Tpv3g. Genome 45:728–736

    PubMed  Article  CAS  Google Scholar 

  16. Fauquet CM, Bisaro DM, Briddon R, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an update list of begomovirus species. Arch Virol 148:405–421

    PubMed  Article  CAS  Google Scholar 

  17. Freyre R, Skroch PW, Geffory V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Periera PA, Tsai S, Tohme J, Dron M, Nienhuis J. Vallejos CE, Gepts P (1998) Towards and integrated linkage map of common bean. 4 development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  18. Garber K, Bilic I, Pusch O, Tohme J, Bachmair A, Schweizer, Jantsch V (1999) The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics, and use for genotype classification. Pl Mol Biol 39:797–807

    Article  CAS  Google Scholar 

  19. Goodman RM (1977) Single-stranded DNA genome in a whitefly transmitted plant virus. Virology 83:171–179

    Article  CAS  PubMed  Google Scholar 

  20. Haber S, Ikegami M, Bajet NB, Goodman RM (1981) Evidence for a divided genome in bean golden mosaic virus, a geminivirus. Nature 289:324–326

    Article  CAS  Google Scholar 

  21. Kang B-C, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    PubMed  Article  CAS  Google Scholar 

  22. Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  23. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    PubMed  Article  CAS  Google Scholar 

  24. Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  Article  CAS  Google Scholar 

  25. López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    PubMed  Google Scholar 

  26. Mansoor S, Briddon R, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    PubMed  Article  CAS  Google Scholar 

  27. Melotto M, Monteiro-Vitorello CB, Bruschi AG, Camargo LEA (2005) Comparative bioinformatic analysis of genes expressed in common bean (Phaseolus vulgaris L.) seedlings. Genome 48:1–9

    Article  Google Scholar 

  28. Mienie CMS, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979

    PubMed  Article  CAS  Google Scholar 

  29. Miklas PN, Johnson E, Stone V, Beaver J, Montoya C, Zapata M (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351

    CAS  Article  Google Scholar 

  30. Miklas PN, Delorme R, Stone V, Daly MJ, Stavely JR, Basset MJ, Beaver J (2000a) Bacterial, fungal and viral disease resistance loci mapped in a recombinant inbred common bean population (“Dorado”/XAN 176). J Am Soc Hort Sci 125:476–481

    CAS  Google Scholar 

  31. Miklas PN, Larsen R, Riley R, Kelly JD (2000b) Potential marker-assisted selection for bc-1 2 resistance to common mosaic potyvirus in common bean. Euphytica 116:211–219

    Article  CAS  Google Scholar 

  32. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  33. Molina Castañeda A, Beaver JS (1998) Inheritance of normal pod development in bean golden mosaic resistant common beans. Ann Rept Bean Improv Coop 41:3–5

    Google Scholar 

  34. Morales F, Niessen I (1988) Comparative responses of selected Phaseolus vulgaris germplasm inoculated artificially and naturally with bean golden mosaic virus. Plant Dis 72:1020–1024

    Google Scholar 

  35. Morales FJ (2001) Conventional breeding for resistance to Bemisia tabaci - transmitted geminiviruses. Crop Prot 20:825–834

    Article  Google Scholar 

  36. Morales F, Anderson P (2001) The emergence and dissemination of whitefly- transmitted Geminivirus in Latin America. Arch Virol 146:415–441

    PubMed  Article  CAS  Google Scholar 

  37. Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65

    PubMed  Article  CAS  Google Scholar 

  38. Morales, F.J. (2005) Whiteflies as vectors of viruses in legume and vegetable mixed cropping systems in the tropical lowlands of Central America, Mexico and the Caribbean. In: Anderson, PK, Morales FJ (eds.) Whitefly and whitefly-borne viruses in the tropics: building a knowledge base for global action, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, p. 173–176. (CIAT publication no. 341)

  39. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Article  Google Scholar 

  40. Osorno JM, Beaver JS, Ferwerda F, Miklas PN (2003) Two genes from Phaseolus coccinues confer resistance to bean golden yellow mosaic virus. Ann Rept Bean Improv Coop 46:147–148

    Google Scholar 

  41. Pedrosa A, Vallejos CE, Bachmair A, Schweizer D (2003) Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212

    PubMed  CAS  Google Scholar 

  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. 2 edn. Cold Spring Harbor Laboratory Press, pp 1.25–1.28

  43. Singh SP, Morales FJ, Miklas PN, Terán H (2000) Selection for bean golden mosaic resistance in intra- and interracial bean populations. Crop Sci 40:1565–1572

    Article  Google Scholar 

  44. Strausbaugh CA, Myers JR, Forster RL, McClean PE (1999) Bc-1 and Bc-u two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hort Sci 124:644–648

    Google Scholar 

  45. Urrea CA, Miklas PN, Beaver JS, Riley RH (1996) A co-dominant randomly amplified polymorphic DNA (RAPD) marker useful for direct selection of bean golden mosaic virus resistance in common bean. J Am Soc Hort Sci 121:1035–1039

    CAS  Google Scholar 

  46. Vandemark GJ, Miklas PN (2002) A fluorescent PCR assay for the codominant interpretation of a dominant SCAR marker linked to the virus resistance allele bc-1-2 in common bean. Mol Breed 10:193–201

    Article  CAS  Google Scholar 

  47. Velez J, Basset MJ, Beaver J, Molina A (1998) Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Hort Sci 123:628–631

    Google Scholar 

Download references

Acknowledgments

We wish to thank P. Miklas, J. Beaver, and G. Rauscher for helpful suggestions, L. Calvert, G. Santana, and M. Fregene for critical review and M. Castaño and H.F. Buendía for technical assistance. This work was supported by USAID and CIAT funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by D. Mather.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blair, M.W., Rodriguez, L.M., Pedraza, F. et al. Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 114, 261–271 (2007). https://doi.org/10.1007/s00122-006-0428-6

Download citation

Keywords

  • Common Bean
  • Single Nucleotide Polymorphism
  • Cleave Amplify Polymorphic Sequence
  • Cleave Amplify Polymorphic Sequence Marker
  • Bean Common Mosaic Virus