Theoretical and Applied Genetics

, Volume 113, Issue 4, pp 661–671 | Cite as

Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.)

  • Bruno Studer
  • Beat Boller
  • Doris Herrmann
  • Eva Bauer
  • Ulrich K. Posselt
  • Franco Widmer
  • Roland Kölliker
Original Paper

Abstract

Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.

Keywords

Disease resistance Linkage mapping Lolium multiflorum Quantitative trait loci (QTL) Xanthomonas translucens pv. graminis 

References

  1. Adams E, Roldán-Ruiz I, Depicker A, van Bockstaele E, de Loose M (2000) A maternal factor conferring resistance to crown rust in Lolium multiflorum cv. “Axis”. Plant Breed 119:182–184CrossRefGoogle Scholar
  2. Aldaoud R, Anderson MW, Reed KFM, Smith KF (2004) Evidence of pathotypes among Australian isolates of crown rust infecting perennial ryegrass. Plant Breed 123:395–397CrossRefGoogle Scholar
  3. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  4. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733PubMedCrossRefGoogle Scholar
  5. Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452CrossRefGoogle Scholar
  6. Boller B, Tanner P, Schubiger FX, Streckeisen P (2001) Selecting meadow fescue ecotypes for reduced susceptibility to bacterial wilt. In: Monjardino P, da Câmara Machado A, Carnide V (eds) Breeding for stress tolerance in fodder crops and amenity grasses. Department of Agricultural Sciences, University of Azores, Terceira, pp 103–107Google Scholar
  7. Brinkerhoff LA (1970) Variation in Xanthomonas malvacearum and its relation to control. Annu Rev Phytopathol 8:85–110CrossRefGoogle Scholar
  8. Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39:943–954CrossRefGoogle Scholar
  9. Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431CrossRefGoogle Scholar
  10. Channon AG, Hissett R (1984) The incidence of bacterial wilt caused by Xanthomonas campestris pv. graminis in pasture grasses in the West of Scotland. Plant Pathol 33:113–121CrossRefGoogle Scholar
  11. Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL, Essenberg M, Nicole M (2005) Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu Rev Phytopathol 43:63–82PubMedCrossRefGoogle Scholar
  12. Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162PubMedCrossRefGoogle Scholar
  13. Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne). Plant Pathol 52:628–637CrossRefGoogle Scholar
  14. Egli T, Goto M, Schmidt D (1975) Bacterial wilt, a new forage grass disease. J Phytopathol 82:111–121CrossRefGoogle Scholar
  15. Erickson D (2005) Mapping the future of QTL’s. Heredity 95:417–418PubMedCrossRefGoogle Scholar
  16. Essenberg M, Bayles MB, Samad RA, Hall JA, Brinkerhoff LA, Verhalen LM (2002) Four near-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology 92:1323–1328CrossRefPubMedGoogle Scholar
  17. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman group Ltd, EssexGoogle Scholar
  18. Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32PubMedCrossRefGoogle Scholar
  19. Fujimori M, Hayashi K, Hirata M, Ikeda S, Takahashi W, Mano Y, Sato H, Takamizo T, Mizuno K, Fujiwara T, Sugita S (2004) Molecular breeding and functional genomics for tolerance to biotic stress. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 21–35CrossRefGoogle Scholar
  20. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77:1435–1444Google Scholar
  21. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  22. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G-L, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125PubMedCrossRefGoogle Scholar
  23. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  24. Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117:451–455CrossRefGoogle Scholar
  25. Ikeda S (2005) Isolation of disease resistance gene analogs from Italian ryegrass (Lolium multiflorum Lam.). Grassl Sci 51:63–70CrossRefGoogle Scholar
  26. Imaizumi S, Honda M, Fujimori T (1999) Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol Control 16:13–17CrossRefGoogle Scholar
  27. Inoue M, Gao Z, Hirata M, Fujimori M, Cai H (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65PubMedCrossRefGoogle Scholar
  28. Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584CrossRefGoogle Scholar
  29. Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295CrossRefGoogle Scholar
  30. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541Google Scholar
  31. Kölliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor Appl Genet 107:306–315PubMedCrossRefGoogle Scholar
  32. Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29:109–119PubMedCrossRefGoogle Scholar
  33. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  34. Kpémoua K, Boher B, Nicole M, Calatayud P, Geiger JP (1996) Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Can J Microbiol 42:1131–1143CrossRefGoogle Scholar
  35. Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572CrossRefGoogle Scholar
  36. Lauvergeat V, Barre P, Bonnet M, Ghesquière M (2005) Sixty simple sequence repeat markers for use in the FestucaLolium complex of grasses. Mol Ecol Notes 5:401–405CrossRefGoogle Scholar
  37. Lehmann J, Briner H-U, Schubiger FX, Mosimann E (2000) Italian and hybrid ryegrass: cultivar trials 97 to 99. Agrarforschung 7:124–129Google Scholar
  38. Leyns F (1993) Xanthomonas campestris pv. graminis: cause of bacterial wilt of forage grasses. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman & Hall, London, pp 55–57Google Scholar
  39. Lopez C, Soto M, Restrepo S, Piégu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol 57:393–410PubMedCrossRefGoogle Scholar
  40. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332PubMedCrossRefGoogle Scholar
  41. Michel VV (2001) Interactions between Xanthomonas campestris pv. graminis strains and meadow fescue and Italian ryegrass cultivars. Plant Dis 85:538–542CrossRefGoogle Scholar
  42. Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287CrossRefGoogle Scholar
  43. Muylle H, Baert J, Van Bockstaele E, Moerkerke B, Goetghebeur E, Roldán-Ruiz I (2005a) Identification of molecular markers linked with crown rust (Puccinia coronata f. sp. lolii) resistance in perennial ryegrass (Lolium perenne) using AFLP markers and a bulked segregant approach. Euphytica 143:135–144CrossRefGoogle Scholar
  44. Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I (2005b) Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity 95:348–357CrossRefGoogle Scholar
  45. Newbury HJ (2003) Plant molecular breeding. Blackwell, OxfordGoogle Scholar
  46. O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816PubMedCrossRefGoogle Scholar
  47. Paul VH, Smith IM (1989) Bacterial pathogens of Gramineae: systematic review and assessment of quarantine status for the EPPO region. EPPO Bull 19:33–42CrossRefGoogle Scholar
  48. Rao KK, Lakshminarasu M, Jena KK (2002) DNA markers and marker-assisted breeding for durable resistance to bacterial blight disease in rice. Biotechnol Adv 20:33–47PubMedCrossRefGoogle Scholar
  49. Rechsteiner MP, Widmer F, Kölliker R (2006) Expression profiling of Italian ryegrass (Lolium multiflorum Lam.) during infection with the bacterial wilt inducing pathogen Xanthomonas translucens pv. graminis. Plant Breed 125:43–51CrossRefGoogle Scholar
  50. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST–SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  51. Schmidt D (1988a) Bacterial wilt of forage grasses: strategies to limit disease dispersal through mowing. Revue Suisse d’agriculture 20:351–357Google Scholar
  52. Schmidt D (1988b) Prevention of bacterial wilt of grasses by phylloplane bacteria. J Phytopathol 122:253–260CrossRefGoogle Scholar
  53. Schmidt D, Nüesch B (1980) Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO Bull 10:335–339CrossRefGoogle Scholar
  54. Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498PubMedCrossRefGoogle Scholar
  55. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  56. Thorogood D, Paget MF, Humphreys MO, Turner LB, Armstead IP, Roderick HW (2001) QTL analysis of crown rust resistance in perennial ryegrass—implications for breeding. Int Turfgrass Soc Res J 9:218–223Google Scholar
  57. Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390PubMedCrossRefGoogle Scholar
  58. Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363PubMedCrossRefGoogle Scholar
  59. Utz HF (2000) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science and Population Genetics. University of Hohenheim, StuttgartGoogle Scholar
  60. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2(1). http://www.uni-hohenheim.de/∼ipspwww/soft.html
  61. Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V., WageningenGoogle Scholar
  62. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  63. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  64. Verdier V, Restrepo S, Mosquera G, Jorge V, Lopez C (2004) Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis-cassava interaction. Plant Mol Biol 56:573–584PubMedCrossRefGoogle Scholar
  65. Visscher PM, Goddard ME (2004) Prediction of the confidence interval of quantitative trait loci location. Behav Genet 34:477–482PubMedCrossRefGoogle Scholar
  66. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  67. Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106Google Scholar
  68. Yang WC, Francis DM (2005) Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J Am Soc Hortic Sci 130:716–721Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bruno Studer
    • 1
  • Beat Boller
    • 1
  • Doris Herrmann
    • 1
  • Eva Bauer
    • 2
  • Ulrich K. Posselt
    • 2
  • Franco Widmer
    • 1
  • Roland Kölliker
    • 1
  1. 1.Agroscope Reckenholz-Tänikon Research Station ARTZurichSwitzerland
  2. 2.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany

Personalised recommendations