Skip to main content
Log in

Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: Type I resistance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a serious disease in wheat and barley affecting both yield and quality. To identify genes for resistance to infection, the RIL population derived from ‘Nanda2419’ × ‘Wangshuibai’ and the parents were evaluated for percentage of infected spikes (PIS) in four different environments. Using a 2,960 cM marker framework map constructed for this population, ten chromosome regions were detected for their association with type I resistance through interval mapping with Mapmaker/QTL, among which QTLs mapped in the intervals of Xwmc349~Xgwm149 on chromosome 4B, of Xwmc96~Xgwm304 on chromosome 5A and of Xgwm408~Xbarc140 on chromosome 5B were revealed in at least three environments and have Wangshuibai as the source of resistance alleles. Qfhi.nau-4B and Qfhi.nau-5A had larger effects and explained up to 17.5 and 27.0% of the phenotypic variance, respectively. To detect epistasis QTLs, two-locus interactions were examined by whole genome scan. Interactions of five locus pairs were found to have significant effects on type I resistance with the LOD score ranging 3.8–6.5 and four of them conferred resistance in parental phase. The one with the most significant effect was Xcfd42~Xgwm469 (6D)/Xwmc390-2~Xbd04 (2A) pair. No QTL × E interaction was detected for PIS. It was found that flowering time did not have significant effects on PIS in this population. Our studies indicated that Wangshuibai is useful for breeding for both type I and type II scab resistance and the markers associated with the QTLs could be used in marker-assisted selection and isolation of scab-resistance QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2

Similar content being viewed by others

Reference

  • Anderson JA, Stack RW, Liu S, Waldron BL, Field AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTL in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Atanasoff D (1920) Fusarium blight (scab) of wheat and other cereals. J Agri Res 20:1–32

    Google Scholar 

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Ann Rev Phytopathol 42:135–161

    Article  CAS  Google Scholar 

  • Bai GH, Shaner G, Ohm H (2000) Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet 100:1–8

    Article  Google Scholar 

  • Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines from the cross Huapei 57–2/Patterson. Euphytica 131:131–136

    Article  CAS  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40:1012–1018

    Article  Google Scholar 

  • Del Blanco IA, Frohberg RC, Stack RW, Berzonsky WA, Kianian SF (2003) Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet 106:1027–1031

    PubMed  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Gilsinger J, Kong L, Shen X, Ohm H (2005) DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theor Appl Genet 110:1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Lipps PE, Campbell KG (2000) Finding quantitative trait loci associated with Fusarium head blight of wheat using simple sequence repeat markers. In: Ward RW et al. (ed.) Proceedings of the 2000 national Fusarium head blight forum, Erlanger, KY. 10–12 Dec. 2000. Michigan State University, East Lansing, pp 28–32

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    Article  CAS  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Article  Google Scholar 

  • Miedaner T, Moldovan M, Ittu M (2003) Comparison of spray and point inoculation to assess resistance to Fusarium head blight in a multi-environment wheat trial. Phytopathology 93:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323–332

    Article  PubMed  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet, on line

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Shen X, Ittu M, Ohm H (2003) Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    Article  CAS  Google Scholar 

  • Snijders CHA (1990) Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica 50:171–179

    Article  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  PubMed  CAS  Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224

    Article  PubMed  CAS  Google Scholar 

  • Tinker NA (1996) MQTL documentation, version 0.98, ftp://gnome.agrenv.mcgill.ca/pub/genetics/software/MQTL/ mqtl.beta098/mqtl.doc

  • Tinker NA, Mather DE (1995a) Methods for QTL analysis with progeny replicated in multiple environments. JQTL: http://probe.nalusda.gov:8000/otherdocs/jqtl/1

  • Tinker NA, Mather DE (1995b) Software for simplified composite interval mapping of QTL in multiple environments. JQTL: http://probe.nalusda.gov:8000/otherdocs/jqtl/2

  • Xu DH, Juan HF, Nohda M, Ban T (2001) QTLs mapping of type I and type II resistance to FHB in wheat. In: Ward RW et al. (ed) National Fusarium heading blight forum proceedings, Erlanger, KY. 8–10 Dec. 2001. Michigan State University, East Lansing, pp 40–42

  • Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  • Zhou WC, Kolb FL, Yu JB, Bai GH, Boze LK, Domier LL (2004) Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137–1143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially supported by NFSC program (30270807, 30430440), NSFC-outstanding youth fund, ‘973’ program, ‘948’ program, and ‘863’ program (2002AA224161, 2003AA207100). We thank all the lab staff and graduate students who have participated in part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.Q. Ma.

Additional information

Communicated by F. Salamini

F. Lin and S.L. Xue equally contributed to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Xue, S., Zhang, Z. et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: Type I resistance. Theor Appl Genet 112, 528–535 (2006). https://doi.org/10.1007/s00122-005-0156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0156-3

Keywords

Navigation