Theoretical and Applied Genetics

, Volume 112, Issue 2, pp 373–381 | Cite as

Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.)

  • Vamsi J. Nalam
  • M. Isabel Vales
  • Christy J. W. Watson
  • Shahryar F. Kianian
  • Oscar Riera-LizarazuEmail author
Original Paper


The mature spike rachis of wild emmer [Triticum turgidum L. ssp. dicoccoides (Körn. ex Asch. and Graebner) Thell.] disarticulates spontaneously between each spikelet leading to the dispersion of wedge-type diaspores. By contrast, the spike rachis of domesticated emmer (Triticum turgidum L. ssp. turgidum) fails to disarticulate and remains intact until it is harvested. This major distinguishing feature between wild and domesticated emmer is controlled by two major genes, brittle rachis 2 (Br-A2) and brittle rachis 3 (Br-A3) on the short arms of chromosomes 3A and 3B, respectively. Because of their biological and agricultural importance, a map-based analysis of these genes was undertaken. Using two recombinant inbred chromosome line (RICL) populations, Br-A2, on chromosome 3A, was localized to a ~11-cM region between Xgwm2 and a cluster of linked loci (Xgwm666.1, Xbarc19, Xcfa2164, Xbarc356, and Xgwm674), whereas Br-A3, on chromosome 3B, was localized to a ~24-cM interval between Xbarc218 and Xwmc777. Comparative mapping analyses suggested that both Br-A2 and Br-A3 were present in homoeologous regions on chromosomes 3A and 3B, respectively. Furthermore, Br-A2 and Br-A3 from wheat and Btr1/Btr2 on chromosome 3H of barley (Hordeum vulgare L.) also were homoeologous suggesting that the location of major determinants of the brittle rachis trait in these species has been conserved. On the other hand, brittle rachis loci of wheat and barley, and a shattering locus on rice chromosome 1 did not appear to be orthologous. Linkage and deletion-based bin mapping comparisons suggested that Br-A2 and Br-A3 may reside in chromosomal areas where the estimated frequency of recombination was ~ 4.3 Mb/cM. These estimates indicated that the cloning of Br-A2 and Br-A3 using map-based methods would be extremely challenging.


Segregation Distortion Rice Chromosome Wild Emmer Homoeologous Group Triticum Turgidum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Justin Faris and Dr. Bikram Gill for providing seed of the genetic stocks used in this study. We also thank Jason Nunes, Robin Treuer, Carla Otto, and Justin Hegstad for their technical assistance. Funding from the Oregon Agricultural Experiment Station is gratefully acknowledged.


  1. Bar-Yosef O (1998) The Natufian Culture in the Levant, threshold of the origin of agriculture. Evol Anthropol 6:159–177CrossRefGoogle Scholar
  2. Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377CrossRefGoogle Scholar
  3. Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846CrossRefGoogle Scholar
  4. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228PubMedCrossRefGoogle Scholar
  5. Cao W, Scoles G J, Hucl P (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94:119–124CrossRefGoogle Scholar
  6. Chen Q-F (2001) Inheritance of disarticulation derived from some hexaploid brittle rachis wheat. Genet Res Crop Evol 48:21–25CrossRefGoogle Scholar
  7. Chen Q-F, Yen C, Yang J-L (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Res Crop Evol 45:21–25Google Scholar
  8. Dinneny JR, Yanofsky MF (2005) Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. Bioessays 27:42–49CrossRefPubMedGoogle Scholar
  9. Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565CrossRefPubMedGoogle Scholar
  10. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321PubMedGoogle Scholar
  11. Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327PubMedGoogle Scholar
  12. Feldman M (2001) Origin of cultivated wheat. In: Bonjean A P, Angus W J (eds) The world wheat book: a history of wheat breeding. Lavoisier, Paris, pp 3–56Google Scholar
  13. Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and aberrations in wheat (Triticum aestivum). Genome 34:830–839Google Scholar
  14. Jantasuriyarat C, Vales MI, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273CrossRefPubMedGoogle Scholar
  15. Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989CrossRefGoogle Scholar
  16. Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33:908–913CrossRefGoogle Scholar
  17. Joppa LR, Williams ND (1988) Langdon durum substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228CrossRefGoogle Scholar
  18. Kerber ER, Rowland GG (1974) Origin of the free threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154Google Scholar
  19. Kandemir N, Yildirim A, Kudrna DA, Hayes PM, Kleinhofs A (2004) Marker assisted genetic analysis of non-brittle rachis trait in barley. Hereditas 141:272–277CrossRefPubMedGoogle Scholar
  20. King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller TE (1997) Tritipyrum a potential new salt-tolerant cereal. Plant Breed 116:127–132CrossRefGoogle Scholar
  21. Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants, 2nd edn. Kluwer, Dordrecht, pp 187–199Google Scholar
  22. Komatsuda T, Mano Y (2002). Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L). Theor Appl Genet 105:85–90CrossRefPubMedGoogle Scholar
  23. Kuckuck H (1964) Experimentelle Untersuchungen zur Entstehung der Kulturweizen. Z Pflanzenzuchtg 51:97–140Google Scholar
  24. Love HH, Craig WT (1919) The synthetic production of wild wheat forms. J Hered 10:51–64Google Scholar
  25. Luo MC, Yang ZL, Dvorak J (2000) The Q locus of Iranian and European spelt wheat. Theor Appl Genet 100:601–606Google Scholar
  26. Matsumoto K, Teramura T, Tabushi J (1963) Development analysis of the rachis disarticulation in Triticum. Wheat Infor Serv 15–16:23–26Google Scholar
  27. Miller TE, Reader SM, Mahmood A, Purdie KA, King IP (1995) Chromosome 3N of Aegilops uniaristata—a source of tolerance to high levels of aluminum for wheat. In: Li ZS, Xin ZY (eds) Proceedings of 8th international wheat genet symposium. China Agricultural Scientech Press, Beijing, China, pp 1037–1042Google Scholar
  28. Morrison LA (1994) Reevaluation of systematic relationships in Triticum L. and Aegilops L. based on comparative morphological and anatomical investigations of dispersal mechanisms. PhD Thesis, Oregon State UniversityGoogle Scholar
  29. Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41Google Scholar
  30. Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Miftahudin, Gustafson JP, Pathan MS, Nguyen HT, Matthews DE, Chao S, Lazo GR, Hummel DD, Anderson OD, Anderson JA, Gonzalez-Hernandez JL, Peng JH, Lapitan N, Qi LL, Echalier B, Gill BS, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Erayman M, Gill KS, McGuire PE, Qualset CO, Sorrells ME (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650CrossRefPubMedGoogle Scholar
  31. Nachit MM, Elouafi I, Pagnotta A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J-M, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L var durum). Theor Appl Genet 102:177–186CrossRefGoogle Scholar
  32. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995) Molecular mapping of wheat homoeologous group 3. Genome 38:525–533PubMedGoogle Scholar
  33. Oba S, Kikuchi F, Maruyama K (1990) Genetic analysis of semidwarfness and grain shattering of Chinese rice variety “Ai-Jio-Nana-Te”. Japan J Breed 40:13–20Google Scholar
  34. Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632CrossRefPubMedGoogle Scholar
  35. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242CrossRefPubMedGoogle Scholar
  36. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697CrossRefPubMedGoogle Scholar
  37. Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55PubMedGoogle Scholar
  38. Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394CrossRefPubMedGoogle Scholar
  39. Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat–maize addition line. Genetics 156:327–339PubMedGoogle Scholar
  40. Riley R G, Kumber G, Law CN (1966) Correspondence between wheat and alien chromosomes. Ann Rep Plant Breed Inst 1964–65:108–109Google Scholar
  41. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  42. Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126CrossRefGoogle Scholar
  43. Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441PubMedGoogle Scholar
  44. Sears ER (1954) The aneuploids of common wheat. University of Missouri, Columbia, pp 3–58Google Scholar
  45. Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732CrossRefGoogle Scholar
  46. Simonetti MC, Bellomo MP, Laghetti G, Perrino P, Simeone R, Blanco A (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet Res Crop Evol 46:267–271CrossRefGoogle Scholar
  47. Smilde WD, Haluśkova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–467CrossRefPubMedGoogle Scholar
  48. Somers DJ, Issac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  49. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560CrossRefPubMedGoogle Scholar
  50. Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson JP, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  51. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25CrossRefPubMedGoogle Scholar
  52. Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glum genes and bread-making quality QTLs. Genet Res Camb 80:131–143Google Scholar
  53. Takahashi R, Hayashi J (1964) Linkage study of two complementary genes for brittle rachis in barley. Ber Ohara Inst Landw Biol Okayama Univ 12:99–105Google Scholar
  54. Thomson MJ, Tai TH, McClung AM, Lai X-H, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493CrossRefPubMedGoogle Scholar
  55. Urbano M, Rest P, Benedettelli S, Blanco A (1988) A Dasypyrum villosum (L.) Candargy chromosome related to homoeologous group 3 of wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. IPSR Cambridge Lab, Cambridge, pp 169–173Google Scholar
  56. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  57. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  58. Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain color dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220CrossRefGoogle Scholar
  59. Watanabe N, Sugiyama K, Yamagashi Y, Sakata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185CrossRefGoogle Scholar
  60. Watanabe N, Takesada N, Fujii Y, Martinek P (2005) Comparative mapping of genes for brittle rachis in Triticum and Aegilops (2005) Czech J Genet Plant Breed 41:39–44Google Scholar
  61. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818CrossRefPubMedGoogle Scholar
  62. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using a F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98:243–251CrossRefGoogle Scholar
  63. Zhang Z, Li P, Wang L, Tan C, Hu Z, Zhu Y, Zhu L (2002) Identification of quantitative trait loci (QTLs) for the characters of vascular bundles in peduncle related to indica-japonica differentiation in rice (Oryza sativa L.). Euphytica 128:279–284CrossRefGoogle Scholar
  64. Zimmerman JG (1934) Anatomische und morphologische Untersuchungen über die Brüchigkeit der Ahrenspindel in der Gattung Triticum. Z Zücht Reihe A Pflanzenzücht 19:164–182Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Vamsi J. Nalam
    • 1
    • 3
  • M. Isabel Vales
    • 1
  • Christy J. W. Watson
    • 1
  • Shahryar F. Kianian
    • 2
  • Oscar Riera-Lizarazu
    • 1
    Email author
  1. 1.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA
  2. 2.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  3. 3.Department of Plant PathologyKansas State UniversityManhattanUSA

Personalised recommendations