Skip to main content
Log in

Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript


The limited population sizes used in many quantitative trait locus (QTL) detection experiments can lead to underestimation of QTL number, overestimation of QTL effects, and failure to quantify QTL interactions. We used the barley/barley stripe rust pathosystem to evaluate the effect of population size on the estimation of QTL parameters. We generated a large (n=409) population of doubled haploid lines derived from the cross of two inbred lines, BCD47 and Baronesse. This population was evaluated for barley stripe rust severity in the Toluca Valley, Mexico, and in Washington State, USA, under field conditions. BCD47 was the principal donor of resistance QTL alleles, but the susceptible parent also contributed some resistance alleles. The major QTL, located on the long arm of chromosome 4H, close to the Mlo gene, accounted for up to 34% of the phenotypic variance. Subpopulations of different sizes were generated using three methods—resampling, selective genotyping, and selective phenotyping—to evaluate the effect of population size on the estimation of QTL parameters. In all cases, the number of QTL detected increased with population size. QTL with large effects were detected even in small populations, but QTL with small effects were detected only by increasing population size. Selective genotyping and/or selective phenotyping approaches could be effective strategies for reducing the costs associated with conducting QTL analysis in large populations. The method of choice will depend on the relative costs of genotyping versus phenotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  • Allison DB, Fernandez JR, Moonseong H, Shankuan Z, Etzel C (2002) Bias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias. Am J Hum Genet 70:575–585

    Article  PubMed  CAS  Google Scholar 

  • Ayoub M, Mather DE (2002) Effectiveness of selective genotyping for detection of quantitative trait loci: an analysis of grain and malt quality traits in three barley populations. Genome 45:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Beavis WB (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (eds) Molecular dissection of complex traits. CRC Press, Boca Raton

    Google Scholar 

  • Bennewitz J, Reinsch N, Kalm E (2002) Improved confidence intervals in quantitative trait loci mapping by permutation bootstrapping. Genetics 160:1673–1686

    PubMed  CAS  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  PubMed  CAS  Google Scholar 

  • Castro AJ, Chen XM, Hayes PM, Knapp SJ, Line RF, Toojinda T, Vivar H (2002a) Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci 42:1701–1708

    Article  CAS  Google Scholar 

  • Castro AJ, Hayes PM, Fillichkin T, Rossi C (2002b) Update of barley stripe rust resistance QTL in the Calichima-sib×Bowman mapping population. Barley Genetics Newsl 32:1–12

    Google Scholar 

  • Castro AJ, Capettini F, Corey AE, Filichkin T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003a) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  • Castro AJ, Chen XM, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci 43:651–659

    Article  CAS  Google Scholar 

  • Chen F, Hayes PM (1989) A comparison of Hordeum bulbosum - mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor Appl Genet 77:701–704

    Google Scholar 

  • Chen XM, Line RF (2001) Races of barley stripe rust in the United States. Barley Newsl 44.

  • Chen F, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994). Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88: 215–219

    CAS  Google Scholar 

  • Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V, Bregitzer P, Lemaux PG, Hayes PM (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Gen Genomics 272:181–193

    Article  CAS  Google Scholar 

  • Dubin HJ, Stubbs RW (1985) Epidemic spread of barley stripe rust in South America. Plant Dis 70:141–144

    Article  Google Scholar 

  • Foolad MR, Zhang LP, Lin G (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Goring HHH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genome-wide scans. Am J Hum Genet 69:1357–1369

    Article  PubMed  CAS  Google Scholar 

  • Hayes PM, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. J Quant. Trait Loci

  • Hayes PM, Cerono J, Witsenboer H, Kuiper M, Zabeau M, Sato K, Kleinhofs A, Kudrna D, Kilian A, Saghai-Maroof M, Hoffman D, NABGMP (1997) Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare). J Quant Trait Loci

  • Hjorth JSU (1994) Computer intensive statistical methods. Validation model selection and bootstrap. Chapman & Hall, London

    Google Scholar 

  • Jannink J-L (2005) Selective phenotyping to accurately map quantitative trait loci. Crop Sci 45:901–908

    Article  CAS  Google Scholar 

  • Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Liu Z-W, Biyashev RM, Maroof MAS (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich Sd, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • SAS Institute (2001) The SAS system for Windows v. 8.02. SAS Institute Inc. Cary, NC, USA

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Shen X, Zhou M, Lu W, Ohm H (2003) Detection of fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047

    PubMed  CAS  Google Scholar 

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci 1:2

    Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTL) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Toojinda T, Baird E, Broers L, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Vivar H (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley. Theor Appl Genet 101:580–589

    Article  CAS  Google Scholar 

  • Utz HF (2001) PLABSTAT. A computer program for statistical analysis of plant breeding experiments (2F). Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0. Software for the calculation of linkage maps. Plant Research International, Wageningen, the Netherlands

  • Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420

    PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2001–2003) Windows QTL cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, USA

  • von Wettstein-Knowles PV (1992) Cloned and mapped genes: current status. CAB International, Wallinfgord

    Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopathol 34:479–501

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references


This work was supported in part by the USDA-NRI program (Plant-Microbe Interactions) and the North American Barley Genome Project (NABGP). We thank Tanya Filichkin, Jeanine DeNoma, Dr. Ariel Castro, and graduate and undergraduate students in the OSU barley program for their technical support in the lab and in the greenhouse. We wish to extend our thanks to Dr. Oscar Riera-Lizarazu for participating in helpful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. I. Vales.

Additional information

Communicated by J. W. Snape

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vales, M.I., Schön, C.C., Capettini, F. et al. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111, 1260–1270 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: