Theoretical and Applied Genetics

, Volume 111, Issue 6, pp 1118–1126 | Cite as

SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism

  • Bert CoemansEmail author
  • Hideo Matsumura
  • Ryohei Terauchi
  • Serge Remy
  • Rony Swennen
  • László Sági
Original Paper


Super-serial analysis of gene expression (SuperSAGE) was used to characterize, for the first time, the global gene expression pattern in banana (Musa acuminata). A total of 10,196 tags were generated from leaf tissue, representing 5,292 expressed genes. Forty-nine tags of the top 100 most abundantly expressed transcripts were annotated by homology to cDNA or EST sequences. Typically for leaf tissue, analysis of the transcript profiles showed that the majority of the abundant transcripts are involved in energy production, mainly photosynthesis. However, the most abundant tag was derived from a type 3 metallothionein transcript, which accounted for nearly 3% of total transcripts analysed. Furthermore, the 26-bp long SuperSAGE tags were applied in 3′-rapid amplification of cDNA ends (3′RACE) for the identification of unknown tags. In combination with thermal asymmetric interlaced PCR (TAIL-PCR), this allowed the recovery of a full gene sequence of a novel NADPH:protochlorophyllide oxidoreductase, the key enzyme in chlorophyll biosynthesis. SuperSAGE in conjunction with 3′RACE and TAIL-PCR will be a powerful tool for transcriptomics of non-model, but otherwise important organisms.


Musa Acuminata Race Product Protochlorophyllide Oxidoreductase SuperSAGE Library Global Musa Genomic Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





rapid amplification of cDNA ends


serial analysis of gene expression


thermal asymmetric interlaced PCR



The authors are indebted to Dr. S. Reich and Dr. D. Krüger (Humboldt University, Berlin, Germany) for providing the EcoP15I endonuclease and Dr. K.W. Kinzler (Johns Hopkins University, Baltimore, USA) for making the SAGE2000 software available. We are also grateful to Ms. I. Van den houwe (INIBAP Transit Center, Katholieke Universiteit Leuven, Belgium) for providing the plant material. Many thanks are due to Mr. I. Op De Beeck, Mr. C.O. Dimkpa and Ms. E. Thiry for technical assistance. Access to the Syngenta Musa 3′ EST database, donated by Syngenta to the International Network for the Improvement of Banana and Plantain (INIBAP) for use within the framework of the Global Musa Genomics Consortium is acknowledged. The research conducted at the Katholieke Universiteit Leuven was supported via an agreement with INIBAP by a grant of the Belgian Directorate-General for Development Cooperation (DGDC).


  1. Aert R, Sági L, Volckaert G (2004) Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor Appl Genet 109:129–139PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050CrossRefPubMedGoogle Scholar
  4. Chen JJ, Rowley JD, Wang SM (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA 97:349–353CrossRefPubMedADSGoogle Scholar
  5. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  6. Eggermont K, Goderis I, Broekaert W (1996) High-throughput RNA extraction from samples based on homogenization by reciprocal shaking in the presence of sand and glass beads. Plant Mol Biol Rep 14:273–279CrossRefGoogle Scholar
  7. Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406CrossRefPubMedGoogle Scholar
  8. Fizames C, Muños S, Cazettes C, Nacry P, Boucherez J, Gaymard F, Piquemal D, Delorme V, Commes T, Doumas P, Cooke R, Marti J, Sentenac H, Gojon A (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol 134:67–80CrossRefPubMedGoogle Scholar
  9. Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, Turnbull CJ, Dunwell M (2003) Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnol J 1:271–285CrossRefPubMedGoogle Scholar
  10. Hashimoto SI, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J, Morishita S, Sugano S, Matsushima K (2004) 5′end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22:1146–1149CrossRefPubMedGoogle Scholar
  11. Jung S, Lee J, Lee D (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567CrossRefPubMedGoogle Scholar
  12. Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529CrossRefPubMedGoogle Scholar
  13. Liu Y, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463CrossRefPubMedGoogle Scholar
  14. Lorenz WW, Dean JFD (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol 22:301–310PubMedGoogle Scholar
  15. Lysák M, Dolezelova M, Horry JP, Swennen R, Dolezel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350Google Scholar
  16. Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719–726CrossRefPubMedGoogle Scholar
  17. Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003a) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 33:425–434CrossRefPubMedGoogle Scholar
  18. Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Krüger DH, Terauchi R (2003b) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723CrossRefPubMedADSGoogle Scholar
  19. Ng P, Wei C, Sung W, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan Y (2005) Gene identification signature (GIS) analysis for transcriptome characterisation and genome annotation. Nat Methods 2:105–111CrossRefPubMedGoogle Scholar
  20. Pauws E, Van Kampen AHC, Van de Graaf SAR, De Vijlder JJM, Ris-Stalpers C (2001) Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res 29:1690–1694CrossRefPubMedGoogle Scholar
  21. Raskin VI, Schwartz A (2002) The charge-transfer complex between protochlorophyllide and NADPH: an intermediate in protochlorophyllide photoreduction. Photosynth Res 74:181–186CrossRefPubMedGoogle Scholar
  22. Robinson SJ, Cram DJ, Lewis CT, Parkin IAP (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol 136:3223–3233CrossRefPubMedGoogle Scholar
  23. Ryo A, Kondoh N, Wakatsuki T, Hada A, Yamamoto N, Yamamoto M, Yamamoto N (2000) A modified serial analysis of gene expression that generates longer sequence tags by nonpalindromic cohesive linker ligation. Anal Biochem 277:160–162CrossRefPubMedGoogle Scholar
  24. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512CrossRefPubMedGoogle Scholar
  25. Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972CrossRefPubMedGoogle Scholar
  26. Van den Berg A, Van der Leij J, Poppema S (1999) Serial analysis of gene expression: rapid RT-PCR analysis of unknown SAGE tags. Nucleic Acids Res 27:17CrossRefGoogle Scholar
  27. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedADSGoogle Scholar
  28. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88:243–251CrossRefPubMedGoogle Scholar
  29. Wei CL, Ng P, Chiu KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y (2004) 5′ Long serial analysis of gene expression (LongSAGE) and 3′ longSAGE for transcriptome characterization and genome annotation. Proc Natl Acad Sci USA 101:11701–11706CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bert Coemans
    • 1
    Email author
  • Hideo Matsumura
    • 2
  • Ryohei Terauchi
    • 2
  • Serge Remy
    • 1
  • Rony Swennen
    • 1
  • László Sági
    • 1
  1. 1.Laboratory of Tropical Crop ImprovementKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Iwate Biotechnology Research CenterKitakamiJapan

Personalised recommendations