Theoretical and Applied Genetics

, Volume 110, Issue 6, pp 1011–1019 | Cite as

Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes

  • S. Sim
  • T. Chang
  • J. Curley
  • S. E. Warnke
  • R. E. Barker
  • G. Jung
Original Paper

Abstract

An restriction fragment length polymorphism (RFLP)-based genetic map of ryegrass (Lolium) was constructed for comparative mapping with other Poaceae species using heterologous anchor probes. The genetic map contained 120 RFLP markers from cDNA clones of barley (Hordeum vulgare L.), oat (Avena sativa L.), and rice (Oryza sativa L.), covering 664 cM on seven linkage groups (LGs). The genome comparisons of ryegrass relative to the Triticeae, oat, and rice extended the syntenic relationships among the species. Seven ryegrass linkage groups were represented by 10 syntenic segments of Triticeae chromosomes, 12 syntenic segments of oat chromosomes, or 16 syntenic segments of rice chromosomes, suggesting that the ryegrass genome has a high degree of genome conservation relative to the Triticeae, oat, and rice. Furthermore, we found ten large-scale chromosomal rearrangements that characterize the ryegrass genome. In detail, a chromosomal rearrangement was observed on ryegrass LG4 relative to the Triticeae, four rearrangements on ryegrass LGs2, 4, 5, and 6 relative to oat, and five rearrangements on ryegrass LGs1, 2, 4, 5, and 7 relative to rice. Of these, seven chromosomal rearrangements are reported for the first time in this study. The extended comparative relationships reported in this study facilitate the transfer of genetic knowledge from well-studied major cereal crops to ryegrass.

References

  1. Ahn SN, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984PubMedGoogle Scholar
  2. Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40CrossRefPubMedGoogle Scholar
  3. Bert PE, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne L.) using AFLP markers. Theor Appl Genet 99:445–452CrossRefGoogle Scholar
  4. Bonierbale M, Plaisted RL, Tanksley SD (1988) RFLP maps of potato and tomato based on a common set of clones reveal modes of chromosomal evolution. Genetics 120:1095–1103Google Scholar
  5. Castiglioni P, Pozzi C, Heun M, Terzi V, Muller KJ, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056PubMedGoogle Scholar
  6. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680Google Scholar
  7. Devos KM, Chao S, Li QY, Simonetti MC, Gale M (1994) Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138:1287–1292Google Scholar
  8. Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat (Triticum monococcum L.) and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999Google Scholar
  9. Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophylls content in wheat. Funct Integr Genomics 4:118–130CrossRefPubMedGoogle Scholar
  10. Gale MD, Devos KM (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15CrossRefPubMedGoogle Scholar
  11. Hayward MD, McAdam, NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hussain KG, Quader B, Stammers M, Will JAK (1994) Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77:269–275Google Scholar
  12. Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will JAK, Humphreys MO, Evans GM (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117:451–455Google Scholar
  13. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87: 4251–4255PubMedGoogle Scholar
  14. Jones ES, Mahoney NL, Hayward MD, Armstead HI, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295CrossRefPubMedGoogle Scholar
  15. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  16. Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Mike G (1994) Conservation of genome structure between rice and wheat. Biotechnology 12:276–278Google Scholar
  17. La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46Google Scholar
  18. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ (1987) mapmaker: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  19. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366Google Scholar
  20. Namuth DM, Lapitan NLV, Gill KS, Gill BS (1994) Comparative RFLP mapping of Hordeum vulgare and Triticum tauschii. Theor Appl Genet 89:865–872Google Scholar
  21. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat Homoeologous group 2. Genome 38:516–524Google Scholar
  22. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat Homoeologous group 3. Genome 38:525–533Google Scholar
  23. Ooijen JW van, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013Google Scholar
  24. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  25. Soreng RJ, Davis JJ (1998) Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. Bot Rev 64:1–85Google Scholar
  26. Tanksley SD, Ganal MW, Prince JP, De Vincente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller L, Paterson AH, Pineda O, RMS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  27. Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci in Lolium perenne L. Heredity 88:385–390CrossRefPubMedGoogle Scholar
  28. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995a) Molecular genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59Google Scholar
  29. Van Deynze AE, Nelson JC, O’Donoghue LS, Ahan S, Siripoonwiwat W, Harrington SE, Yglesias ES, Braga DP, McCouch SR, Sorrells ME (1995b) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356Google Scholar
  30. Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995c) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754PubMedGoogle Scholar
  31. Van Deynze AE, Sorrells ME, Park WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping of grass genera. Theor Appl Genet 97:356–369CrossRefGoogle Scholar
  32. Warnke SE, Barker RE, Jung G, Sim SC, Rouf Mian MA, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual×perennial ryegrass population. Theor Appl Genet 109:294–304CrossRefPubMedGoogle Scholar
  33. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Sim
    • 1
  • T. Chang
    • 1
  • J. Curley
    • 1
  • S. E. Warnke
    • 2
  • R. E. Barker
    • 3
  • G. Jung
    • 1
  1. 1.Department of Plant PathologyUniversity of Wisconsin-MadisonUSA
  2. 2.National ArboretumWashington
  3. 3.USDA-ARS National Forage Seed Production Research CenterCorvallisUSA

Personalised recommendations