Skip to main content
Log in

Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

N-(phosphonomethyl)glycine (glyphosate) resistance was previously reported in a horseweed [Conyza (=Erigeron) canadensis (L.) Cronq.] population from Houston, DE (P R0 ). Recurrent selection was performed on P R0 , since the population was composed of susceptible (5%) and resistant (95%) phenotypes. After two cycles of selection at 2.0 kg ae glyphosate ha−1, similar glyphosate rates that reduced plant growth by 50%, glyphosate rates that inflicted 50% mortality in the population, and accumulations of half of the maximum detectable shikimic acid concentration were observed between the parental P R0 and the first (RS1) and second (RS2) recurrent generations. In addition, RS1 and RS2 did not segregate for resistance to glyphosate. This suggested that the RS2 population comprised a near-homozygous, glyphosate-resistant line. Whole-plant rate responses estimated a fourfold resistance increase to glyphosate between RS2 and either a pristine Ames, IA (P P0 ) or a susceptible C. canadensis population from Georgetown, DE (P S0 ). The genetics of glyphosate resistance in C. canadensis was investigated by performing reciprocal crosses between RS2 and either the P P0 or P S0 populations. Evaluations of the first (F1) and second (F2) filial generations suggested that glyphosate resistance was governed by an incompletely dominant, single-locus gene (R allele) located in the nuclear genome. The proposed genetic model was confirmed by back-crosses of the F1 to plants that arose from achenes of the original RS2, P P0 , or P S0 parents. The autogamous nature of C. canadensis, the simple inheritance model of glyphosate resistance, and the fact that heterozygous genotypes (F1) survived glyphosate rates well above those recommended by the manufacturer, predicted a rapid increase in frequency of the R allele under continuous glyphosate selection. The impact of genetics on C. canadensis resistance management is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2004) Crop protection reference. C and P, New York, pp 1836–1855

    Google Scholar 

  • Baerson SR, Rodriguez DJ, Biest NA, Tran M, You J, Kreuger RW, Dill GM, Pratley JE, Gruys KJ (2002a) Investigating the mechanism of glyphosate resistance in rigid ryegrass (Lolium ridigum). Weed Sci 50:721–730

    CAS  Google Scholar 

  • Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002b) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    Article  CAS  Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for impairing glyphosate tolerance to crop plants. In: Singh BJ, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. Current topics in plant physiology, vol 7. American Society of Plant Physiology, Rockville, p 386

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308

    Article  CAS  Google Scholar 

  • Bradshaw LD, Padgette SR, Kimball SL, Wells BH (1997) Perspectives on glyphosate resistance. Weed Technol 11:189–198

    CAS  Google Scholar 

  • Brown SM, Whitwell T (1988) Influence of tillage on horseweed, Conyza canadensis. Weed Technol 2:269–270

    Google Scholar 

  • Buhler DD, Owen MDK (1997) Emergence and survival of horseweed (Conyza canadensis). Weed Sci 45:98–101

    CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Google Scholar 

  • Chun PT, Hickok LG (1992) Inheritance of two mutations conferring glyphosate tolerance in the fern Ceratopteris richardii. Can J Bot 70:1097–1099

    Google Scholar 

  • Collett D (2002) Modelling binary data. CRC, Boca Raton, p 408

    Google Scholar 

  • Cromartie TH, Polge ND (2002) Method of detecting shikimic acid. US Patent 6,482,654

  • Dauer JT, Humston R, Peskin N, Mortensen DA, Jones BP (2003) Predicting long-distance dispersal of horseweed (Conyza canadensis) using wind tunnel experiments (Abstract). WSSA 43:26

    Google Scholar 

  • Duncan CN, Weller SC (1987) Heritability of glyphosate susceptibility among biotypes of field bindweed. J Hered 78:257–260

    Google Scholar 

  • Feng PCC, Pratley JE, Bohn JA (1999) Resistance to glyphosate in Lolium rigidum. II. Uptake, translocation, and metabolism. Weed Sci 47:412–415

    CAS  Google Scholar 

  • Feng PCC, Tran M, Chiu T, Sammons RD, Heck GR, CaJacob CA (2004) Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498–505

    CAS  Google Scholar 

  • Foley ME (1987) Glyphosate accumulation in leafy spurge laticifers. Can J Plant Sci 67:509–510

    CAS  Google Scholar 

  • Gardner SN, Gressel J, Mangel M (1998) A revolving dose strategy to delay the evolution of both quantitative vs major monogene resistances to pesticides and drugs. Int J Pest Manag 44:161–180

    Article  CAS  Google Scholar 

  • Gasquez J (1997) Genetics of herbicide resistance within weeds. Factors of evolution, inheritance and fitness. In: De Prado R, Jorrín J, García-Torres L (eds) Weed and crop resistance to herbicides. Kluwer, Dordrecht, pp 181–189

    Google Scholar 

  • Gleason HA, Cronquist A (1991) Manual of vascular plants of northeastern United States and adjacent Canada. New York Botanical Garden, New York, p 810

    Google Scholar 

  • Gout E, Bligny R, Genix P, Tissut M, Douce R (1992) Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies. Biochimie 74:875–882

    Article  CAS  PubMed  Google Scholar 

  • Harring T, Streibig JC, Husted S (1998) Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J Agric Food Chem 46:4406–4412

    Article  CAS  Google Scholar 

  • Heap I (2004) The international survey of herbicide resistant weeds. http://www.weedscience.com

  • Hetherington PR, Marshall G, Kirkwood RC, Warner JM (1998) Absorption and efflux of glyphosate by cell suspensions. J Exp Bot 49:527–533

    Article  CAS  Google Scholar 

  • Holländer-Czytko H, Amrhein N (1983) Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors. Plant Sci Lett 29:89–96

    Article  Google Scholar 

  • Holländer-Czytko H, Sommer I, Amrhein N (1992) Glyphosate tolerance of cultured Corydalis sempervirens cells is acquired by an increased rate of transcription of 5-enolpyruvylshikimate-3-phosphate synthase as well as by a reduced turnover of the enzyme. Plant Mol Biol 20:1029–1036

    PubMed  Google Scholar 

  • Huynh H, Feldt LS (1970) Conditions under which mean square ratios in repeated measurements designs have exact F-distributions. J Am Stat Assoc 65:1582–1589

    Google Scholar 

  • Jasieniuk M, Brûlé-Babel AL, Morrison IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176–193

    CAS  Google Scholar 

  • Kern AJ, Myers TM, Jasieniuk M, Murray BG, Maxwell BD, Dyer WE (2002) Two recessive gene inheritance for triallate resistance in Avena fatua L. J Hered 93:48–50

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of and Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence and analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet 210:437–442

    CAS  PubMed  Google Scholar 

  • Komoßa D, Gennity I, Sandermann HJ (1992) Plant metabolism of herbicides with C-P bonds: glyphosate. Pestic Biochem Physiol 43:85–94

    Google Scholar 

  • Lee LJ, Ngim J (2000) A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag Sci 56:336–339

    Article  CAS  Google Scholar 

  • Letouzé A, Gasquez J (2001) Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theor Appl Genet 103:288–296

    Article  Google Scholar 

  • Lorraine-Colwill DF, Hawkes TR, Williams PH, Warner SAJ, Sutton PB, Powles SB, Preston C (1999) Resistance to glyphosate in Lolium rigidum. Pestic Sci 55:489–491

    Article  CAS  Google Scholar 

  • Lorraine-Colwill DF, Powles SB, Hawkes TR, Hollinshead PH, Warner SAJ, Preston C (2003) Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pestic Biochem Physiol 74:62–72

    Article  Google Scholar 

  • Lorraine-Colwill DF, Powles SB, Hawkes TR, Preston C (2001) Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor Appl Genet 102:545–550

    Article  Google Scholar 

  • Mollenhauer C, Smart CC, Amrhein N (1987) Glyphosate toxicity in the shoot apical region of the tomato plant. I. Plastid swelling is the initial ultrastructural feature following in vivo inhibition of 5-enolpyruvylshikimic acid 3-phosphate synthase. Pestic Biochem Physiol 29:55–65

    CAS  Google Scholar 

  • Montgomery RF, Dutt TE, Murphy GP, Willard TS, Elmore GA (2003) Control of marestail (Conyza canadensis) with glyphosate. Proc South Weed Sci Soc 56:355–356

    Google Scholar 

  • Mueller TC, Massey JH, Hayes RM, Main CL, Stewart CNJ (2003) Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). J Agric Food Chem 51:680–684

    Article  CAS  PubMed  Google Scholar 

  • Muenscher WC (1935) Weeds. Macmillan, New York, p 577

    Google Scholar 

  • Muñoz-Rueda A, Gonzalez-Murua C, Becerril JM, Sánchez-Díaz MF (1986) Effects of glyphosate [N-(phosphonomethyl)glycine] on photosynthetic pigments, stomatal response and photosynthetic electron transport in Medicago sativa and Trifolium pratense. Physiol Plant 66:63–68

    Google Scholar 

  • Ng CH, Wickneswary R, Salmijah S, Teng YT, Ismail BS (2004a) Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Aust J Agric Res 55:407–414

    Article  CAS  Google Scholar 

  • Ng CH, Ratnam W, Surif S, Ismail BS (2004b) Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Sci 52:564–570

    CAS  Google Scholar 

  • Pérez A, Kogan M (2003) Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Res 43:12–19

    Article  Google Scholar 

  • Pérez A, Alister C, Kogan M (2004) Absorption, translocation and allocation of glyphosate in resistant and susceptible Chilean biotypes of Lolium multiflorum. Weed Biol Manag 4:56–58

    Article  Google Scholar 

  • Powles SB, Lorraine-Colwill DF, Dellow JJ, Preston C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604–607

    CAS  Google Scholar 

  • Pratley J, Urwin N, Stanton R, Baines P, Broster J, Cullis K, Schafer D, Bohn J, Krueger R (1999) Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci 47:405–411

    CAS  Google Scholar 

  • Preston C (2003) Inheritance and linkage of metabolism-based herbicide cross-resistance in rigid ryegrass (Lolium rigidum). Weed Sci 51:4–12

    CAS  Google Scholar 

  • Racchi ML, Stefanini F, Camussi A, Forlani G (1997) Inheritance of glyphosate tolerance among maize somaclones. Maydica 42:275–280

    Google Scholar 

  • SAS (2000) SAS procedures guide, version 8. SAS Institute, Cary, p 3884

    Google Scholar 

  • Schabenberger O, Tharp BE, Kells JJ, Penner D (1999) Statistical tests for hormesis and effective dosages in herbicide dose response. Agron J 91:713–721

    CAS  Google Scholar 

  • Seefeldt SS, Hoffman DL, Gealy DR, Fuerst EP (1998) Inheritance of diclofop resistance in wild oat (Avena fatua L.) biotypes from the Willamette Valley of Oregon. Weed Sci 46:170–175

    CAS  Google Scholar 

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218–227

    Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    PubMed  Google Scholar 

  • Tabashnik BE (1991) Determining the mode of inheritance of pesticide resistance with backcross experiments. J Econ Entomol 84:703–712

    CAS  PubMed  Google Scholar 

  • Tucker TA, Langeland KA, Corbin FT (1994) Absorption and translocation of 14C-imazapyr and 14C-glyphosate in alligatorweed Alternanthera philoxeroides. Weed Technol 8:32–36

    CAS  Google Scholar 

  • VanGessel MJ (2001) Glyphosate-resistant horseweed from Delaware. Weed Sci 49:703–705

    CAS  Google Scholar 

  • VanGessel MJ, Ayeni AO, Majek BA (2001) Glyphosate in full-season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol 15:714–724

    CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    Google Scholar 

  • Wang T, Fleury A, Ma J, Darmency H (1996) Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered 87:423–426

    CAS  Google Scholar 

  • Weaver SE (2001) The biology of Canadian weeds 115 Conyza canadensis. Can J Plant Sci 81:867–875

    Google Scholar 

  • Westwood JH, Weller SC (1997) Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis) biotypes. Weed Sci 45:2–11

    CAS  Google Scholar 

  • Yuan CI, Chaing MY, Chen YM (2002) Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis. Plant Sci 163:543–554

    Article  CAS  Google Scholar 

  • Zeng L, Baird WV (1999) Inheritance of resistance to anti-microtubule dinitroaniline herbicides in an “intermediate” resistant biotype of Eleusine indica (Poaceae). Am J Bot 86:940–947

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Paul Knosby, Jacquelyn Ruhland, and Rocío van der Laat assisted with crosses. Jonathan Gressel provided comments and recommendations to this investigation and critically reviewed this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zelaya.

Additional information

Communicated by H.C. Becker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelaya, I.A., Owen, M.D.K. & VanGessel, M.J. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq.. Theor Appl Genet 110, 58–70 (2004). https://doi.org/10.1007/s00122-004-1804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1804-8

Keywords

Navigation