Skip to main content
Log in

Nucleotide polymorphism in the Adh1 locus region of the wild rice Oryza rufipogon

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Nucleotide variation in the alcohol dehydrogenase (Adh1) locus region of the wild rice Oryza rufipogon and its related species was analysed to clarify the maintenance mechanism of DNA variation in Oryza species. The estimated nucleotide diversity in the Adh1 locus region of O. rufipogon was 0.002, which was one of the lowest values detected in nuclear loci of plant species investigated so far. Tests of neutrality detected significantly negative deviation from the neutral mutation model for the coding region, especially for replacement sites. When each of the ADH1 domains was considered, significance was detected only for the catalytic domain 1. These results suggest purifying selection in the Adh1 coding region. In the phylogenetic tree of Oryza species based on Adh1 variation, cultivated rice O. sativa subspp. japonica and indica were included in the cluster of O. rufipogon. The genetic distance of the Adh1 region between O. rufipogon and O. sativa was as low as the nucleotide diversity of O. rufipogon. These results imply that O. rufipogon and O. sativa cannot be classified based on the nucleotide variation of Adh1. No replacement divergence between O. rufipogon and the other three A-genome species (O. glumaepatula, O. barthii and O. meridionalis) were detected, indicating that ADH1 is conserved in the A-genome species. On the other hand, between O. rufipogon and the E-genome species O. australiensis, replacement changes were detected only in the catalytic domain 1. The difference in replacement substitutions between the A- and E-genome species may be related to adaptive changes in the ADH1 domains, reflecting environmental differences where the species encounter anaerobic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328

    Article  CAS  Google Scholar 

  • Akimoto M, Shimamoto Y, Morishima H (1999) The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff.: a case study in Thailand. Genet Resour Crop Evol 46:419–425

    Article  Google Scholar 

  • Barbier P (1989) Genetic variation and ecotypic differentiation in the wild rice species Oryza rufipogon. I. Population differentiation in life-history traits and isozymic loci. Jpn J Genet 64:259–271

    Google Scholar 

  • Barbier P, Ishihama A (1990) Variation in the nucleotide sequence of a prolamin gene family in wild rice. Plant Mol Biol 15:191–195

    CAS  PubMed  Google Scholar 

  • Barbier P, Morishima H, Ishihama A (1991) Phylogenetic relationships of annual and perennial wild rice: probing by direct DNA sequencing. Theor Appl Genet 81:693–702

    CAS  Google Scholar 

  • Bautista NS, Solis R, Kamijima O, Ishii T (2001) RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet Syst 76:71–79

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Liu FL, Zang L (1998) The evolution of the alcohol dydrogenase gene family by loss of introns in plants of the genus Leaveworthia (Brassicaceae). Mol Biol Evol 15:552–559

    CAS  PubMed  Google Scholar 

  • Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E (2002) Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 77:323–334

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion patterns of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cummings MP, Clegg MT (1998) Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. Proc Natl Acad Sci USA 95:5637–5642

    Article  CAS  PubMed  Google Scholar 

  • Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ (1984) Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucleic Acids Res 12:3983–4000

    CAS  PubMed  Google Scholar 

  • Fu YX, Li WS (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  Google Scholar 

  • Gao Lz, Hong DY (2000) Allozyme variation and population genetic structure of common wild rice Oryza rufipogon Griff. in China. Theor Appl Genet 101:494–502

    Article  CAS  Google Scholar 

  • Gao LZ, Wei C, Yang Q, Hong DY, Ge H (2001) Intra-population genetic structure of Oryza rufipogon Griff. in Yunnan, China. J Plant Res 114:107–113

    CAS  Google Scholar 

  • Gaut BS, Clegg MT (1993) Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). Genetics 135: 1091–1097

    CAS  PubMed  Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown HD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    CAS  PubMed  Google Scholar 

  • Innan H, Tajima F, Terauchi R, Miyashita NT (1996) Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. Genetics 143:1761–1770

    CAS  PubMed  Google Scholar 

  • Ishii T, Terachi T, Tsunewaki K (1988) Restriction endonuclease analysis of chloroplast DNA from A-genome diploid species of rice. Jpn J Genet 63:523–536

    Google Scholar 

  • Ishii T, Nakano T, Maeda H, Kamijima O (1996a) Phylogenetic relationships in A-genome species of rice as revealed by RAPD analysis. Genes Genet Syst 71:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Nakano T, Maeda H, Kamijima O, Khush GS (1996b) Phylogenetic relationships betweeen cultivated and wild species of rice as revealed by DNA polymorphisms. In: Rice genetics III. Proceedings of the Third International Rice Genetics Symposium, International Rice Research Institute, Manila, 16–20 October 1995

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Lin JZ, Brown AHD, Clegg MT (2001) Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies spontaneum). Proc Natl Acad Sci USA 98:531–536

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Takano T, Takeda G, Uchimiya H (1998) Adh1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor Appl Genet 97:1197–1203

    Article  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12:219–236

    CAS  PubMed  Google Scholar 

  • Miyashita NT, Innan H, Terauchi R (1996) Intra-and interspecific variation of the alcohol dehydrogenase locus region of wild plants Arabis gemmifera and Arabidopsis thaliana. Mol Biol Evol 13:433–436

    CAS  PubMed  Google Scholar 

  • Morishima H (2002) Reports of the study-tours for investigation of wild and cultivated rice species. Conducted by the staff of National Institute of Genetics, Japan and coworkers during 1957–1997, Part I

  • Morishima H, Barbier P (1990) Mating system and genetic structure of natural populations in wild rice Oryza rufipogon. Plant Species Biol 5:31–39

    Google Scholar 

  • Morishima H, Oka HI, Cheng WT (1961) Directions of differentiation in populations of wild rice, Oryza perennis and O. sativa f. spontanea. Evolution 15:326–339

    Google Scholar 

  • Morishima H, Sano Y, Oka HI (1984) Differentiation of perennial and annual types due to habitat conditions in the wild rice Oryza perennis. Plant Syst Evol 144:119–135

    Google Scholar 

  • Nakazono M, Tsuji H, Li Y, Saisho D, Arimura S, Tsutsumi N, Hirai A (2000) Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol 124:587–598

    Article  CAS  PubMed  Google Scholar 

  • Oka HI, Chang WT (1959) The impact of cultivation on populations of wild rice, Oryza sativaF. spontanea. Phyton 13:105–117

    Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  • Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Google Scholar 

  • Second G (1985) Evolutionary relationships in the Sativa group of Oryza based on isozyme data. Genet Sel Evol 17:89–114

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh1Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    Article  CAS  PubMed  Google Scholar 

  • Utami DW, Moeljopawiro S, Septiningsih EM, Aswidinnoor H, Sujiprihati SD (2001) Introgression of the resistance trait of blast from Oryza rufipogon to IR64. J Bioteknol Pertanian 6:51–58

    Google Scholar 

  • Vaughan DA (1989) The genus Oryza L. Current status of taxonomy. IRRI Res Pap Ser 138:1–21

    Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    CAS  PubMed  Google Scholar 

  • Weising K, Kaemmer D, Weigand F, Epplen JT, Kahl G (1991) Oligonucleotide fingerprinting reveals various prove-dependent levels of informativeness in chickpea (Cicer arietinum). Genome 35:436–442

    Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Xie Y, Wu R (1989) Rice alcohol dehydrogenase genes: anaerobic induction, organ-specific expression and characterization of cDNA clones. Plant Mol Biol 13:53–68

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the National Institute of Genetics, Japan; Dr. Y.I. Sato, Shizuoka University, Japan; the International Rice Research Institute, The Philippines, for providing plant materials for this study; and R. Terauchi, Iwate Biotechnology Research Center, Japan, for comments on an early version of this manuscript. This is contribution number 578 from the Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Miyashita.

Additional information

Communicated by O. Savolainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, K., Miyashita, N.T. & Ishii, T. Nucleotide polymorphism in the Adh1 locus region of the wild rice Oryza rufipogon. Theor Appl Genet 109, 1406–1416 (2004). https://doi.org/10.1007/s00122-004-1752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1752-3

Keywords

Navigation