Theoretical and Applied Genetics

, Volume 109, Issue 1, pp 103–111 | Cite as

Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines

  • S. C. González-Martínez
  • J. J. Robledo-Arnuncio
  • C. Collada
  • A. Díaz
  • C. G. Williams
  • R. Alía
  • M. T. Cervera
Original Paper


Microsatellite transfer across coniferous species is a valued methodology because de novo development for each species is costly and there are many species with only a limited commodity value. Cross-species amplification of orthologous microsatellite regions provides valuable information on mutational and evolutionary processes affecting these loci. We tested 19 nuclear microsatellite markers from Pinus taeda L. (subsection Australes) and three from P. sylvestris L. (subsection Pinus) on seven Eurasian hard pine species (P. uncinata Ram., P. sylvestris L., P. nigra Arn., P. pinaster Ait., P. halepensis Mill., P. pinea L. and P. canariensis Sm.). Transfer rates to species in subsection Pinus (36–59%) were slightly higher than those to subsections Pineae and Pinaster (32–45%). Half of the trans-specific microsatellites were found to be polymorphic over evolutionary times of approximately 100 million years (ten million generations). Sequencing of three trans-specific microsatellites showed conserved repeat and flanking regions. Both a decrease in the number of perfect repeats in the non-focal species and a polarity for mutation, the latter defined as a higher substitution rate in the flanking sequence regions close to the repeat motifs, were observed in the trans-specific microsatellites. The transfer of microsatellites among hard pine species proved to be useful for obtaining highly polymorphic markers in a wide range of species, thereby providing new tools for population and quantitative genetic studies.


  1. Al-Rababah M, Williams CG (2002) Population dynamics of Pinus taeda L. based on nuclear microsatellites. For Ecol Manage 163:263–271Google Scholar
  2. Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG (2002) Conifer microsatellite handbook. Corporate Press, Raleigh, N.C.Google Scholar
  3. Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F (1998) Pines of the Mediterranean basin. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 153–170Google Scholar
  4. Brohede J, Ellegren H (1999) Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proc R Soc London Ser B 266:825–833Google Scholar
  5. Cooper G, Rubinsztein DC, Amos W (1998) Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet 7:1425–1429PubMedGoogle Scholar
  6. Crawford AM, Kappes SM, Paterson KA, deGotari MJ, Dodds KG, Freking BA, Stone RT, Beattie CW (1998) Microsatellite evolution: testing the ascertainment bias hypothesis. J Mol Evol 46:256–260PubMedGoogle Scholar
  7. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21Google Scholar
  8. Devey ME, Jermstad KD, Tauer CG, Neale DB (1991) Inheritance of RFLP loci in a loblolly pine three-generation pedigree. Theor Appl Genet 83:238–242Google Scholar
  9. Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662Google Scholar
  10. Echt CS, Deverno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316CrossRefGoogle Scholar
  11. Echt CS, Vendramin GG, Nelson CD, Marquardt P (1999) Microsatellite DNA as shared genetic markers among conifer species. Can J For Res 29:365–371CrossRefGoogle Scholar
  12. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558CrossRefPubMedGoogle Scholar
  13. Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite evolution: directionality or bias in locus selection. Nat Genet 11:360–362PubMedGoogle Scholar
  14. Elsik CG, Williams CG (2001) Families of clustered microsatellites in a conifer genome. Mol Genet Genomics 265:535–542PubMedGoogle Scholar
  15. Fallour D, Fady B, Lefevre F (1997) Study on isozyme variation in Pinus pinea L.: Evidence for low polymorphism. Silvae Genet 46:201–207Google Scholar
  16. Frankis MP (1993) Morphology and affinities of Pinus brutia. In: Ministry of Forestry (ed) Int Symp Pinus brutia Ten. Ministry of Forestry, Ankara, pp 11–18Google Scholar
  17. Geada-López G, Kamiya K, Harada K (2002) Phylogenetic relationships of Diploxylon pines (subgenus Pinus) based on plastid sequence data. Int J Plant Sci 163:737–747CrossRefGoogle Scholar
  18. Gómez A, Aguiriano E, Alía R, Bueno MA (2002) Análisis de los recursos genéticos de Pinus pinea L. en España mediante microsatélites del cloroplasto. Invest Agrar Sist Recur For 11:145–154Google Scholar
  19. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586Google Scholar
  20. Joyner KL, Wang X-R, Johnston JS, Price HJ, Williams CG (2001) DNA content for Asian pines parallels New World relatives. Can J Bot 79:179–191CrossRefGoogle Scholar
  21. Karhu A (2001) Evolution and applications of pine microsatellites. University of Oulu, Oulu, FinlandGoogle Scholar
  22. Karhu A, Dieterich JH, Savolainen O (2000) Rapid expansion of microsatellite sequences in pines. Mol Biol Evol 17:259–265PubMedGoogle Scholar
  23. Keys RN, Autino A, Edwards KJ, Fady B, Pichot C, Vendramin GG (2000) Characterization of nuclear microsatellites in Pinus halepensis Mill. and their inheritance in Pinus halepensis and Pinus brutia Ten. Mol Ecol 9:2157–2159PubMedGoogle Scholar
  24. Klaus W (1989) Mediterranean pines and their history. Plant Syst Evol 162:133–163Google Scholar
  25. Kostia S, Varvio SL, Vakkari P, Pulkkinen P (1995) Microsatellite sequences in a conifer, Pinus sylvestris. Genome 38:1244–1248PubMedGoogle Scholar
  26. Krupkin AB, Liston A, Strauss SH (1996) Phylogenetic analysis of the hard pines (subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. Am J Bot 83:489–498Google Scholar
  27. Kutil B, Williams CG (2001) Triplet-repeat microsatellites shared among hard and soft pines. J Hered 92:327–332PubMedGoogle Scholar
  28. Liston A, Robinson WA, Piñero D, Álvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11:95–109CrossRefPubMedGoogle Scholar
  29. Mariette S, Chagne D, Decroocq S, Vendramin GG, Lalanne C, Madur D, Plomion C (2001) Microsatellite markers for Pinus pinaster Ait. Ann For Sci 58:203–206CrossRefGoogle Scholar
  30. Meksem K, Njiti VN, Banz WJ, Iqbal MJ, Kassem MyM, Hyten DL, Yuang J, Winters TA, Lightfoot DA (2001) Genomic regions that underlie soybean seed isoflavone content. J Biomed Biotechnol 1:38–44CrossRefPubMedGoogle Scholar
  31. Miller C (1977) Mesozoic conifers. Bot Rev 43:217–280Google Scholar
  32. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedGoogle Scholar
  33. Orti G, Pearse DE, Avise JC (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci USA 94:10745–10749PubMedGoogle Scholar
  34. Price RA, Liston A, Strauss SH (1998) Phylogeny and systematics of Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 49–68Google Scholar
  35. Primmer CR, Ellegren H (1998) Patterns of molecular evolution in avian microsatellites. Mol Biol Evol 15:997–1008Google Scholar
  36. Prus-Glowacki W, Stephan BR (1994) Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genet 43:7–14Google Scholar
  37. Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283.Google Scholar
  38. Raymond M, Rousset F (1995b) genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  39. Shepherd M, Cross M, Maguire TL, Dieters MJ, Williams CG, Henry RJ (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827Google Scholar
  40. Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261PubMedGoogle Scholar
  41. Soranzo N, Alía R, Provan J, Powell W (2000) Patterns of variation at mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211CrossRefPubMedGoogle Scholar
  42. Taylor JS, Durkin JM, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16:567–572PubMedGoogle Scholar
  43. Zhou Y, Bui T, Auckland LD, Williams CG (2002) Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45:91–99CrossRefPubMedGoogle Scholar
  44. Zhu Y, Queller DC, Strassmann JE (2000) A phylogenetic perspective of sequence evolution in microsatellite loci. J Mol Evol 50:324–338PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. C. González-Martínez
    • 1
  • J. J. Robledo-Arnuncio
    • 1
  • C. Collada
    • 2
  • A. Díaz
    • 2
  • C. G. Williams
    • 3
  • R. Alía
    • 1
  • M. T. Cervera
    • 1
  1. 1.Unidad de Genética ForestalCIFOR-INIAMadridSpain
  2. 2.Departamento de Biotecnología, ETSIMCiudad Universitaria s/nMadridSpain
  3. 3.Graduate Genetics Program, TAMU 2135Texas A & M UniversityCollege StationUSA

Personalised recommendations