Skip to main content
Log in

A likelihood approach for mapping growth trajectories using dominant markers in a phase-unknown full-sib family

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Dominant markers have been commonly used in mapping quantitative trait loci (QTLs) in outcrossing species, in which not much prior genome information is available. But the dominant nature of these markers may lead to reduced QTL mapping precision and power. A new statistical method is proposed to incorporate growth laws into a QTL mapping framework, under which the use of the efficiency of dominant markers can be increased. This new method can be used to identify specific QTLs affecting differentiation in growth trajectories, and further estimate the timing of a QTL to turn on, or turn off, affecting growth during the entire ontogeny of a species. Using this method based on dominant markers we have successfully mapped a QTL for stem height growth trajectories to a linkage group in a forest tree. The implications of this method for the understanding of the genetic architecture of growth using dominant markers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atchley WR (1984) Ontogeny, timing of development, and genetic variance-covariance structure. Am Nat 123:519–540

    Article  Google Scholar 

  • Atchley WR, Zhu J (1997) Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147:765–776

    CAS  PubMed  Google Scholar 

  • Bertalanffy von L (1957) Quantitative laws for metabolism and growth. Quart Rev Biol 32:217–231

    CAS  PubMed  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc, pp 211-252

  • Carroll RJ, Ruppert D (1984) Power-transformations when fitting theoretical models to data. J Am Stat Assoc 79:321–328

    Google Scholar 

  • Cheverud JM, Routman EJ, Duarte FAM, van Swinderen B, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142:1305–1319

    CAS  PubMed  Google Scholar 

  • Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman and Hall, London

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J Roy Stat Sco Ser B 39:1–38

    Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • Gessler DDG, Xu S (1999) Multipoint genetic mapping of quantitative trait loci with dominant markers in outbred populations. Genetica 105:281–291

    CAS  PubMed  Google Scholar 

  • Jansen RC (1996) A general Monte Carlo method for mapping multiple quantitative trait loci. Genetics 142:305–311

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Heckman N (1989) A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol 27:429–450

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Lofsvold D, Bulmer M (1990) Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124:979–993

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Hill WG, Thompson R (1994) Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle. Genet Res 64:57–69

    CAS  PubMed  Google Scholar 

  • Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157:1789–1803

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in human. Proc Natl Acad Sci USA 84:2363–2367

    CAS  PubMed  Google Scholar 

  • Lou X-Y, Casella G, Littell RC, Yang MCK, Johnson JA, Wu RL (2003) A haplotype-based algorithm for multilocus linkage-disequilibrium mapping of quantitative trait loci with epistasis. Genetics 163:1533–1548

    CAS  PubMed  Google Scholar 

  • Lund MS, Sorensen P, Madsen P (2002) Linkage analysis in longitudinal data using random regression. 7th World Congress on Genetics Applied to Livestock Production, August 19–23 2002, Montpellier, France

  • Ma CX, Casella G, Wu RL (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762

    PubMed  Google Scholar 

  • Mackay TFC (2001) Quantitative trait loci in Drosophila. Nature Rev Genet 2:11–20

    Article  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, et al: (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Nunez-Anton V (1997) Longitudinal data analysis: non-stationary error structures and antedependent models. Appl Stoch Models Data Anal 13:279–287

    Article  Google Scholar 

  • Nunez-Anton V, Zimmerman DL (2000) Modeling nonstationary longitudinal data. Biometrics 56:699–705

    CAS  PubMed  Google Scholar 

  • Pletcher SD, Geyer CJ (1999) The genetic analysis of age-dependent traits: modeling the character process. Genetics 153:825–835

    CAS  PubMed  Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    CAS  PubMed  Google Scholar 

  • Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C, Cheverud JM (1999) Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res 74:313–322

    Article  CAS  PubMed  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, Berlin Heidelberg New York

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    Article  CAS  PubMed  Google Scholar 

  • Wu RL, Ma C-X, Painter I, Zeng Z-B (2002a) Simultaneous maximum-likelihood estimation of linkages and linkage phases over a heterogeneous genome. Theor Pop Biol 61:349–363

    Article  Google Scholar 

  • Wu RL, Ma C-X, Casella G (2002b) Joint linkage and linkage-disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779–792

    CAS  PubMed  Google Scholar 

  • Xie C, Xu S (1999) Mapping quantitative trait loci with dominant markers in four-way crosses. Theor Appl Genet 98:1014–1021

    Article  Google Scholar 

  • Yin TM, Zhang XY, Huang MR, Wang MX, Zhuge Q, Tu SM, Zhu L-H, Wu RL (2002) The molecular linkage maps of the Populus genome. Genome 45:541–555

    Article  CAS  PubMed  Google Scholar 

  • Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH (1998) A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148:839–850

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their constructive comments on this manuscript. This work is supported by an Outstanding Young Investigator Award (30128017) of the National Natural Science Foundation of China, a University of Florida Research Opportunity Fund (02050259), and a University of South Florida Biodefense grant (7222061-12) to R. W. The publication of this manuscript was approved as Journal Series No. R-09204 by the Florida Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wu.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, CX., Lin, M., Littell, R.C. et al. A likelihood approach for mapping growth trajectories using dominant markers in a phase-unknown full-sib family. Theor Appl Genet 108, 699–705 (2004). https://doi.org/10.1007/s00122-003-1484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1484-9

Keywords

Navigation