Skip to main content
Log in

Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned 19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL cartographer version 1.15, North Carolina State University, Raleigh, N.C.

  • Beasley JO (1940) The origin of American tetraploid Gossypium species. Am Nat 74:285–286

    Article  Google Scholar 

  • Brown MS (1980) Identification of the chromosomes of Gossypium hirsutum L. by means of translocations. J Hered 71:266–274

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Google Scholar 

  • Castiglioni P, Ajmone-Marsan P, Wijk R (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431

    Article  CAS  Google Scholar 

  • Chen Z, Devey M, Tuleen NA, Hart GE (1994) Use of recombinant substitution lines in construction of RFLP-based genetic maps of chromosomes 6A and 6B of tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 89:703–712

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Doerge RW, Craig BA (2000) Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci USA 97:7951–7956

    CAS  PubMed  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytology and cytogenetics. In: Kohel RJ, Lewis DF (eds) Agronomy, vol 24. Cotton. American Society of Agronomy, Madison, Wis., pp 59–80

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed  Google Scholar 

  • Geever RF, Katterman F, Endrizzi JE (1989) DNA hybridization analyses of a Gossypium allotetraploid and two closely related diploid species. Theor Appl Genet 77:553–559

    CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282

    Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1485

    CAS  PubMed  Google Scholar 

  • Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium. Proc Natl Acad Sci USA 95:4419–4424

    CAS  PubMed  Google Scholar 

  • Kearsey M, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    PubMed  Google Scholar 

  • Kearsey MJ, Hyne V (1994) QTL analysis: A simple "marker regression approach". Theor Appl Genet 89:698–702

    Google Scholar 

  • Kimber G (1961) Basis of the diploid-like meiotic behavior of polyploid cotton. Nature 191:98–99

    Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Leitch IL, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with mapmaker/exp3.0. Whitehead Institute, Cambridge, Mass.

  • Liu B, Brubaker G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    CAS  PubMed  Google Scholar 

  • Liu S, Saha S, Stelly D, Burr B, Cantrell RG (2000) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332

    Article  CAS  PubMed  Google Scholar 

  • Livingstone KD, Churchill G, Jahn MK (2000) Linkage mapping in populations with karyotypic rearrangements. J Hered 91:423–428

    Article  CAS  PubMed  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.). Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • Moser EB, Saxton AM, Geaghan JP (1988) Biological applications of the SAS system: an overview. Comput Appl Biosci 4:233–238

    CAS  PubMed  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genome DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    CAS  Google Scholar 

  • Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. John Wiley & Sons, New York, pp 33–63

  • Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113

    Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    CAS  PubMed  Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  CAS  PubMed  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    CAS  Google Scholar 

  • Shappley ZW, Jenkins JN, Meredith WR, McCarty JC Jr (1998) An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet 97:756–761

    CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    CAS  PubMed  Google Scholar 

  • Stebbins GL (1940) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

  • Stelly DM (1993) Interfacing cytogenetics with the cotton genome mapping effort. In: Herber DJ, Richter DA (eds) Beltwide Cotton Conf. National Cotton Council of America, Memphis, pp 1545–1550

  • Tinker NA, Mather DE (1995) mqtl: software for simplified composite interval mapping of QTL in multiple environments. J Quant Loci ftp://gnome.agrenv.mcgill.ca/software/MQTL

  • Ulloa M, Meredith R Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an interspecific population. J Cotton Sci 4:161–170

    CAS  Google Scholar 

  • Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F(2.3) populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208

    Article  Google Scholar 

  • Vos P (1998) AFLP fingerprinting of Arabidopsis. Methods Mol Biol 82:147–155

    CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321

    CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    CAS  PubMed  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313

    Article  CAS  PubMed  Google Scholar 

  • Wight CP, Tinker NA, Kianian SF, Sorrells ME, O'Donoughue LS, Hoffman DL, Groh S, Scoles GJ, Li CD, Webster FH, Phillips RL, Rines HW, Livingston SM, Armstrong KC, Fedak G, Molnar SJ (2003) A molecular marker map in 'Kanota' × 'Ogle' hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 46:28–47

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. X Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AH (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 5:479–492

    Google Scholar 

Download references

Acknowledgements

We thank Andrew Paterson for providing DNA clones in RFLP analysis and Clint Magill and Kelly Biddle for critical suggestions on improving the manuscript. The research was supported by funds from the Texas Agricultural Experiment Station, the Texas Biotechnology Initiative (TxCOT), and Texas Higher Education Coordinating Board (Advanced Technology Program, ATP 000517-0218-2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. J. Chen.

Additional information

Communicated by J. Dvorak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, M., Syed, N.H., Gao, W. et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108, 280–291 (2004). https://doi.org/10.1007/s00122-003-1433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1433-7

Keywords

Navigation