Skip to main content
Log in

Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Transposable elements might be importantly involved in citrus genetic instability and genome evolution. The presence of gypsy like retrotransposons, their heterogeneity and genomic distribution in Citrus and Poncirus, have been investigated. Eight clones containing part of the POL coding region of gypsy like retrotransposons have been isolated from a commercial variety of Citrus clementina, one of the few sexual species in Citrus. Four of the eight clones might correspond to active elements given that they present all the conserved motifs described in the literature as essential for activity, no in-frame stop codon and no frame-shift mutation. High homology has been found between some of these citrus elements and retroelements within a resistance-gene cluster from potato, another from Poncirus trifoliata and two putative resistance polyproteins from rice. Nested copies of gypsy like elements are scattered along the Citrus and Poncirus genomes. The results on genomic distribution show that these elements were introduced before the divergence of both genera and evolved separately thereafter. IRAPs based on gypsy and copia types of retrotransposons seem to distribute differently, therefore gypsy based IRAPs prove a new, complementary set of molecular markers in Citrus to study and map genetic variability, especially for disease resistance. Similarly to copia-derived IRAPs, the number of copies and heterozygosity values found for gypsy derived IRAPs are lower in Poncirus than in Citrus aurantium, which is less apomictic and the most usual rootstock for clementines until 1970.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  CAS  PubMed  Google Scholar 

  • Asíns MJ, Monforte AJ, Mestre PF, Carbonell-EA (1999) Citrus and Prunus copia-like retrotransposons. Theor Appl Genet 99:503–510

    Article  Google Scholar 

  • Asíns MJ, Garcia MR, Ruiz C, Carbonell EA (2002) Molecular markers for the genetic analysis of apomixis. In: Jain SM, Brar DS, Ahloowalia BS (eds) Molecular techniques in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 266–281

  • Balint-Kurti PJ, Clendennen SK, Dolezelová M, Valárik M, Dolezel J, Beetham PR, May GD (2000) Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet 263:908–915

    Article  CAS  PubMed  Google Scholar 

  • Barber AM, Hizi A, Maizel JVJ, Hughes SH (1990) HIV-1 reverse transcriptase: structure predictions for the polymerase domain. AIDS Res Hum Retrov 6:1061–1072

    CAS  Google Scholar 

  • Bernet GP, Mestre PF, Pina JA, Asíns MJ (2003) Molecular discrimination of lemon cultivars. HortScience (in press)

  • Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol 21:285–293

    Article  Google Scholar 

  • Cameron JW, Frost HB (1968) Genetics, breeding and nucellar embryony. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol II. Division of Agricultural Science, University of California, Berkeley, pp 325–370

  • Chalker DL, Sandmeyer SB (1992) Ty3 integrates within the region of RNA polymerase-III initiation. Genes Dev 6:117–128

    CAS  PubMed  Google Scholar 

  • Chavanne F, Zhang DX, Liaud MF, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Echenique V, Stamova B, Wolters P, Lazo G, Carollo VL, Dubcovsky J (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  Google Scholar 

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97:7002–7007

    PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Rev 3:329–341

    Article  CAS  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: fifteen Proteins and an RNA. Annu Rev Biochem 67:1-25

    Article  CAS  PubMed  Google Scholar 

  • Friesen N., Brandes A, Heslop-Harrison JS (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in Conifers. Mol Biol Evol 18:1176–1188

    CAS  PubMed  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Hickey DA (1982) Selfish DNA: a sexually-transmited nuclear parasite. Genetics 101:519–531

    CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  • Khan E, Mack JPG, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860

    CAS  PubMed  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics (submitted)

  • Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W (1988) Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol 204:233–46

    CAS  PubMed  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190

    CAS  PubMed  Google Scholar 

  • Marionette S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue –specific RNA processing. Plant Cell 9:967–978

    Article  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Google Scholar 

  • McDonald JF (1995) Transposable elements—possible catalysts of organismic evolution. Trends Ecol Evol 10:123–126

    Article  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    CAS  PubMed  Google Scholar 

  • Purugganan MD, Wessler SR (1994) Molecular evolution of Magellan, a maize Ty3/gypsy like retrotransposon. Proc Natl Acad Sci USA 91:11674–11678

    CAS  PubMed  Google Scholar 

  • Raghuvanshi SS (1962) Cytogenetical studies in genus Citrus. IV. Evolution in genus Citrus. Cytologia 27:172–188

    Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of resistance genes. Plant Mol Biol 42:195–204

    CAS  PubMed  Google Scholar 

  • Richter TE, Pryor AJ, Bennetzen JL, Hulbert SH (1995) New rust resistance specificities associated with recombination at the Rp1 complex in maize. Genetics 141:373–381

    CAS  PubMed  Google Scholar 

  • Ruiz C, Asíns MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    CAS  PubMed  Google Scholar 

  • Ruiz C, Bretó MP, Asíns MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    CAS  Google Scholar 

  • Shcherban AB, Vaughan DA, Tomooka N, Kaga A (2001) Diversity in the integrase coding domain of a gypsy like retrotransposon among wild relatives of rice in the Oryza officinalis complex. Genetica 110:43–53

    Article  Google Scholar 

  • Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86:5015–5019

    CAS  PubMed  Google Scholar 

  • Springer MS, Britten RJ (1993) Phylogenetic relationships of reverse transcriptase and RNAse H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol 10:1370–1379

    CAS  PubMed  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    CAS  PubMed  Google Scholar 

  • Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineaple, Anannas comosus. Plant Mol Biol 38:461–465

    Article  CAS  PubMed  Google Scholar 

  • Van der Vossen E, Rouppe van der Voort J, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema W, Klein-Lankhorst (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Vicient CM, Jääskeläinen M, Kalendar R, Schulman A (2001a) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Schulman A (2001b) Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res 11:2041–2049

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf, Keller B (2001) Analysis of a contiguous 211-kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-N, Ye X-R, Choi S, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the cistrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of P. trifoliata (L.) Raf. Genome 44:382–393

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-N, Ye X-R, Choi S, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Haymer D (1998) Molecular structure of yoyo, a gypsy like retrotransposon from the Mediterranean fruit fly, Ceratitis capitata. Genetica 101:167–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Conselleria de Cultura, educació i Ciència (GPB), Instituto Nacional de Investigaciones Agrarias (SC99-047) and Ministerio de Ciencia y Tecnología (AGL2002-02395). We are grateful to Dr. Luis Navarro for allowing us the use of the Citrus Germplasm Bank at IVIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Asíns.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernet, G.P., Asíns, M.J. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus . Theor Appl Genet 108, 121–130 (2003). https://doi.org/10.1007/s00122-003-1382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1382-1

Keywords

Navigation