Skip to main content

Advertisement

Log in

Efficient multipoint mapping: making use of dominant repulsion-phase markers

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The paper is devoted to the problem of multipoint gene ordering with a particular focus on "dominance" complication that acts differently in conditions of coupling-phase and repulsion-phase markers. To solve the problem we split the dataset into two complementary subsets each containing shared codominant markers and dominant markers in the coupling-phase only. Multilocus ordering in the proposed algorithm is based on pairwise recombination frequencies and using the well-known travelling salesman problem (TSP) formalization. To obtain accurate results, we developed a multiphase algorithm that includes synchronized-marker ordering of two subsets assisted by re-sampling-based map verification, combining the resulting maps into an integrated map followed by verification of the integrated map. A new synchronized Evolution-Strategy discrete optimization algorithm was developed here for the proposed multilocus ordering approach in which common codominant markers facilitate stabilization of the marker order of the two complementary maps. High performance of the employed algorithm allows systematic treatment for the problem of verification of the obtained multilocus orders, based on computing-intensive bootstrap and jackknife technologies for detection and removing unreliable marker scores. The efficiency of the proposed algorithm was demonstrated on simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bailey NTJ (1961) Introduction to mathematical theory of genetic linkage. Calendon Press, Oxford

  • Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res 12:26–36

    CAS  PubMed  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol AB, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790

    CAS  PubMed  Google Scholar 

  • Buetow KN, Chakravarti A (1987) Multipoint gene mapping using seriation. Am J Hum Genet 41:189–201

    CAS  PubMed  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize: on the road to an integrated map. Plant Physiol 130:1598-1605

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Gurling H (1993) A procedure for combining two-point lod scores into a summary multipoint map. Hum Hered 43:173–185

    CAS  PubMed  Google Scholar 

  • Efron B (1979) Bootstrap method: another look at the jackknife. Ann Stat 7:1–26

    Google Scholar 

  • Ellis T (1997) Neighbour mapping as a method for ordering genetic markers. Genet Res 69:35–43

    Article  CAS  Google Scholar 

  • Esch E, Weber WE (2002) Investigation of crossover interference in barley (Hordeum vulgare L.) using the coefficient of coincidence. Theor Appl Genet 104:786–796

    Article  Google Scholar 

  • Falk CT (1992) Preliminary ordering of multiple linked loci using pairwise linkage data. Genet Epidemiology 9:367–375

    CAS  PubMed  Google Scholar 

  • Fogel D (1992) Evolving artificial intelligence. PhD thesis, University of California, San-Diego

  • Hall D, Bhandarkar SH, Wang J (2001) ODS2: a multiplatform software application for creating integrated physical and genetic maps. Genetics 157:1045–1056

    Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2,275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Holland J (1975) Adaptation in natural and artificial systems. MIT PRESS, Cambridge, USA

  • Homberger J, Gehring H (1999) Two evolutionary metaheuristics for a vehicle routing problem with time windows. INFOR 37:297–318

    Google Scholar 

  • Jansen J, de Jong AC, van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122

    CAS  Google Scholar 

  • Kirkpatrick S, Gellatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ, Holloway JL, Bridges WC, Liu BH (1995) Mapping dominant markers using F2 mating. Theor Appl Genet 91:74–81

    Google Scholar 

  • Lathrop GM, Llouel JM (1984) Easy calculation of lod scores and genetic risks on small computers. Am J Hum Genet 36:469–465

    Google Scholar 

  • Lathrop GM, Llouel JM, Julier C, Ott J (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 37:482–498

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus linkage maps in human. Proc Natl Acad Sci USA 84:2363–2367

    CAS  PubMed  Google Scholar 

  • Lin S, Kernighan B (1973) An effective heuristic algorithm for the TSP. Operation Res 21:498–516

    Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, New York

    Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2,926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  CAS  PubMed  Google Scholar 

  • Mester D (1999) The parallel algorithm for vehicle routing problem with time window restrictions. Scientific report, Minerva Optimization Center, Technion, Haifa, Israel

  • Mester D (2003) Evolutionary strategies algorithm for a large-scale vehicle routing problem with capacitate and time-windows restrictions. J Heuristics (revised)

  • Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics (revised)

  • Muhlenbein H, Gorges-Scheuter MO, Kramer O (1998) Evolution algorithm in combinatorial optimization. Parallel Computing 7:65–85

    Article  Google Scholar 

  • Newell RW, Mott R, Beck S, Lehrach H (1995) Construction of genetic maps using distance geometry. Genomics 30:59–70

    Article  CAS  PubMed  Google Scholar 

  • Nissen V (1994) Evolutionare algorithmen. Deutscher Universitats-Verlag, Wiesbaden

  • Olson JM, Boehnke M (1990) Monte Carlo comparison of preliminary methods of ordering multiple genetic loci. Am J Hum Genet 47:470–482

    CAS  PubMed  Google Scholar 

  • Or I (1976) Traveling salesman – type combinatorial problems and their relations to the logistics of regional blood banking. PhD thesis, Dept Industrial Engendering and Management Science, Northwestern University

  • Osman I (1993) Metastrategy simulated annealing and Tabu Search algorithm for VRP. Ann Operation Res 41:421–451

    Google Scholar 

  • Parsons YM, Shaw KL (2002) Mapping unexplored genomes. A genetic linkage map of the Hawaiian cricket laupala. Genetics 162:1275–1282

    Google Scholar 

  • Peng J, Korol A, Fahima T, Roder M, Ronin Y, Li Y, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    CAS  PubMed  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication QTLs in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

  • Pérez-Enciso M, Roussot O (2002) A method for computing identity by descent probabilities and quantitative trait loci mapping with dominant (AFLP) markers. Genetical Res 79:247–258

    Google Scholar 

  • Press WT, Hannery BP, Teucolsky SA, Veterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, London

  • Rechenberg I (1973) Evolutionstrategie. Fromman-Holzboog, Stutgart

  • Sall T, Nilsson NO (1994) The robustness of recombination frequency estimates in intercrosses with dominant markers. Genetics 137:589–596

    PubMed  Google Scholar 

  • Schwefel H-P (1977) Numeriche Optimierung von Computer-Modelen Mittels der Evolutions-strategie. Birkauser, Basel

  • Schwefel H-P (1987) Collective phenomena in evolutionary systems. Interne Berichte und Skripten, Fachbereich Informatic, University Dortmund

  • Schinex T, Gaspin C (1997) Carthagene: constructing and joining maximum-likelihood genetic maps. ISMB 5:258–267

    PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    CAS  Google Scholar 

  • Thompson EA (1984) Information gain in joint linkage analysis. IMA J Math Appl Med Biol 1:31–49

    CAS  PubMed  Google Scholar 

  • VanOoijen JW (2002) JoinMap 3.0: advanced computer software for the calculation of genetic linkage maps in experimental populations. j.w.vanooijen@plant.wag-ur.nl

  • Wang Y, Prade R, Griffith J, Timberlake W, Arnold J (1994) ODS_BOOTSTRAP: assessing the statistical reliability of physical maps by bootstrap re-sampling. CABIOS 10:625–634

    CAS  PubMed  Google Scholar 

  • Weeks D, Lange K (1987) Preliminary ranking procedures for multilocus ordering. Genomics 1:236–242

    CAS  PubMed  Google Scholar 

  • Wilson S (1988) A major simplification in the preliminary ordering of linked loci. Genet Epidemiology 5:75–80

    CAS  PubMed  Google Scholar 

  • Whitaker D, Williams ER (2001) OutMap version 1.0. http://www.ffp.csiro.au/tigr/software/outmap/outmap.htm

  • Yang YP, Womack JE (1998) Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res 8:731–736

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Israeli Ministry of Absorption, the United States-Israel Binational Science Foundation (grant 4556), the German-Israeli Cooperation Project (DIP project funded by the BMBF and supported by the BMBFs International Bureau at the DLR), and the Ancell-Teicher Research Foundation for Molecular Genetics and Evolution. We thank the JoinMap software developers for the possibility to use the package for comparative testing with our new algorithm. The useful comments and suggestions of anonymous referees and J. Snape are acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Korol.

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mester, D.I., Ronin, Y.I., Hu, Y. et al. Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet 107, 1102–1112 (2003). https://doi.org/10.1007/s00122-003-1305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1305-1

Keywords

Navigation