Theoretical and Applied Genetics

, Volume 107, Issue 5, pp 857–863 | Cite as

Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content

  • S. G. AtienzaEmail author
  • Z. Satovic
  • K. K. Petersen
  • O. Dolstra
  • A. Martín


Chlorine and potassium content are important traits related to combustion quality of Miscanthus species. These traits were analysed in a cross between F1.1 and F1.7 entries of Miscanthus sinensis Anderss, both lines offspring of the cross between MS-90-2 and MS-88-110. Quantitative trait locus (QTL) analyses were performed on a previous linkage map constructed with the offspring cross mapping strategy. The mapqtl 4.0 package was used to perform QTL analyses. Six potential QTLs were detected with data collected over a 2-year period. Of these, four were associated with chlorine and two with potassium. These results could be used as an initial step to develop a marker-aided selection programme for biomass with low mineral content.


Miscanthus Offspring cross Biomass QTL Combustion quality 



This research was supported by project FAIR CT98-3571. The population used in this study was developed by K.K. Petersen and K. Kristiansen (Danish Institute of Agricultural Sciences). The first author gratefully acknowledges the Consejería de Educación y Ciencia of the Junta de Andalucía for a pre-doctoral fellowship.


  1. Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–24Google Scholar
  2. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952CrossRefGoogle Scholar
  3. Beale CV, Long P (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 32:314–331Google Scholar
  4. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  5. Clifton-Brown JC, Lewandowski I (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in southern Germany. Eur J Agron 16:97–110CrossRefGoogle Scholar
  6. Conneally PM, Edwards JH, Kidd KK, Lalouel J-M, Morton N, Ott J, White R (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359PubMedGoogle Scholar
  7. Deuter M, Abraham J (1998) Genetic resources of Miscanthus and their use in breeding Biomass for energy and industry. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) Proc Int Conf. Würzburg, pp 775–777Google Scholar
  8. García MR, Asíns MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487–493Google Scholar
  9. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Angew Bot 67:87–90Google Scholar
  10. Hernández Allica J, Mitre AJ, González Bustamante JA, Itoiz C, Blanco F, Alkorta I, Garbisu G (2001) Straw quality for its combustión in a straw-fired power plant. Biomass Bioenergy 21:249–258CrossRefGoogle Scholar
  11. Jansen RC (1993) Interval mapping ofmultiple quantitative trait loci. Genetics 135:205–211PubMedGoogle Scholar
  12. Jansen RC (1994) Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881PubMedGoogle Scholar
  13. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  14. Jorgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy 12:155–169CrossRefGoogle Scholar
  15. Knott SA, Haley CS (1992) Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132:1211–1222PubMedGoogle Scholar
  16. Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820CrossRefGoogle Scholar
  17. LaCroix R, Keeney DR, Walsh LM (1970) Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Commun Soil Sci Plant Anal 1:1–6Google Scholar
  18. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  19. Lata K, Bisht NS (1993) Foliar nutrients during growth pahses of Q. leucotrichohora growing at different aspect in Garhwal Himalaya. Indian J For 16:62–66Google Scholar
  20. Lehmann EL (1975) Nonparametrics. McGraw-Hill, New YorkGoogle Scholar
  21. Lerceteau E, Szmidt AE, Andersson B (2001) Detection of quantitative trait loci in Pinus sylvestris L. across years. Euphytica 121:117–122CrossRefGoogle Scholar
  22. Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6:163–177CrossRefGoogle Scholar
  23. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227Google Scholar
  24. Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus 'Giganteus' an interspecific hybrid. Hereditas 119:297–300Google Scholar
  25. MAFF (1981) The analysis of agricultural materials (RB427). Ministry of Agriculture and Fisheries and Food, London, pp 156–157Google Scholar
  26. Maliepaard C, Van Ooijen JW (1994) QTL mapping in a full-sib family of an outcrossing species. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proc 9th Meet EUCARPIA Section Biometrics Plant Breed Plant Research International, Wageningen, pp 140–146Google Scholar
  27. Miles TR, Miles TR Jr, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1996) Boiler deposits from rifing biomass fuels. Biomass and Bioenergy 10:125–138CrossRefGoogle Scholar
  28. Monforte AJ, Asíns MJ, Carbonell (1997) Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713CrossRefGoogle Scholar
  29. Nielsen PN (1990) Elefantengrassanbau in Dänemark-Praktikerbericht. Pflug Spaten 3:1–4Google Scholar
  30. Obernberger I, Bidermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12:211–224CrossRefGoogle Scholar
  31. Sander B (1997) Properties of Danish biofuels and the requirements for power production. Biomass Bioenergy 12:177–183CrossRefGoogle Scholar
  32. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281CrossRefGoogle Scholar
  33. Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222CrossRefGoogle Scholar
  34. Shanmughavel P, Francis K (1996) Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss. Biomass Bioenergy 10:383–391CrossRefGoogle Scholar
  35. Strauss S, Lande R, Namkoong G (1992) Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res 22:1050–1061Google Scholar
  36. Tozlu I, Guy CL, Moore GA (1999) QTL analysis of Na+ and Cl accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692–705CrossRefGoogle Scholar
  37. Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811Google Scholar
  38. Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624PubMedGoogle Scholar
  39. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2000) mapqtl version 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, WageningenGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. G. Atienza
    • 1
    Email author
  • Z. Satovic
    • 2
  • K. K. Petersen
    • 3
  • O. Dolstra
    • 4
  • A. Martín
    • 1
  1. 1.Departamento de Agronomía y Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apdo. 4084, 14080 Córdoba, Spain
  2. 2.Faculty of Agriculture, Department of Seed Science and Technology, Svetosimunska 25, 10000 Zagreb, Croatia
  3. 3.Danish Institute of Agricultural Sciences, Department of Horticulture, Kirstinebjergvej 10, P.O. Box 102, 5792 Aarslev, Denmark
  4. 4.Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands

Personalised recommendations