Skip to main content
Log in

Update Harnleiterrekonstruktion 2024

Update on ureteral reconstruction 2024

  • Leitthema
  • Published:
Die Urologie Aims and scope Submit manuscript

Zusammenfassung

Harnleiterstrikturen können im gesamten Harnleiterverlauf auftreten. Die Genese ist dabei vielfältig. Ursächlich für die Entstehung sind u. a. angeborene Anomalien, iatrogene Verletzungen im Rahmen von endoskopischen sowie offenen oder minimalinvasiven viszeralchirurgischen, gynäkologischen und urologischen Eingriffen sowie eine zuvor erfolgte Radiatio. Die Therapieplanung bei Harnleiterstrikturen erfordert eine detaillierte Auseinandersetzung mit Striktur- und Patientencharakteristika. Angesichts der vielfältigen Optionen zur Harnleiterrekonstruktion müssen verschiedene Methoden für jeden Patienten in Betracht gezogen werden. Kurzstreckige proximale Engen sowie Engen am pyeloureteralen Übergang werden operativ meist mittels Nierenbeckenplastik nach Anderson-Hynes versorgt. Bei kurzstreckigen proximalen und mittleren Harnleiterstrikturen kann eine End-zu-End-Anastomosierung erfolgen. Bei distalen Strikturen kommt die Ureterozystoneostomie zum Einsatz und wird häufig mit einer Boari- und/oder Psoas-Hitch-Plastik kombiniert. Vor allem die Behandlung von langstreckigen Strikturen im Bereich des proximalen und mittleren Harnleiters stellt weiterhin eine chirurgische Herausforderung dar. Hier bietet die Verwendung von Darminterponaten eine anerkannte Therapieoption mit guten funktionellen Ergebnissen, jedoch auch damit assoziierten potenziellen Komplikationen. Die offen-chirurgische Harnleiterrekonstruktion stellt jedoch weiterhin vor allem nach multiplen abdominellen Voroperationen ein etabliertes Verfahren dar.

Abstract

Ureteral strictures can occur along the entire course of the ureter and have many different causes. Factors involved in the development include, among other things, congenital anomalies, iatrogenic injuries during endoscopic as well as open or minimally invasive visceral surgical, gynecological, and urological procedures as well as prior radiation therapy. Planning treatment for ureteral strictures requires a detailed assessment of stricture and patient characteristics. Given the various options for ureteral reconstruction, various methods must be considered for each patient. Short-segment proximal strictures and strictures at the pyeloureteral junction are typically surgically managed with Anderson–Hynes pyeloplasty. End-to-end anastomosis can be performed for short-segment proximal and middle ureteral strictures. Distal strictures are treated with ureteroneocystostomy and are often combined with a Boari and/or Psoas Hitch flap. Particularly, the treatment of long-segment strictures in the proximal and middle ureter remain a surgical challenge. The use of bowel interposition is an established treatment option for this, offering good functional results but also potential associated complications. Robot-assisted surgery is increasingly becoming a minimally invasive treatment alternative to reduce hospital stays and optimize postoperative recovery. However, open surgical ureteral reconstruction remains an established procedure, especially after multiple previous abdominal operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Abbas T, Elifranji M, Al-Salihi M et al (2022) Functional recoverability post-pyeloplasty in children with ureteropelvic junction obstruction and poorly functioning kidneys: systematic review. J Pediatr Urol 18:616–628. https://doi.org/10.1016/j.jpurol.2022.07.009

    Article  PubMed  Google Scholar 

  2. Abboudi H, Ahmed K, Royle J et al (2013) Ureteric injury: a challenging condition to diagnose and manage. Nat Rev Urol 10:108–115. https://doi.org/10.1038/nrurol.2012.254

    Article  PubMed  Google Scholar 

  3. Abraham G, Das K, Ramaswami K et al (2011) Laparoscopic reconstruction of iatrogenic-induced lower ureteric strictures: does timing of repair influence the outcome? Indian J Urol 27:465. https://doi.org/10.4103/0970-1591.91433

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al Aaraj MS, Badreldin AM (2023) Ureteropelvic junction obstruction. StatPearls

    Google Scholar 

  5. Anderson JC, Hynes W (1949) RETROCAVAL URETER:a case diagnosed pre-operatively and treated successfully by a plastic operation. Br J Urol 21:209–214. https://doi.org/10.1111/j.1464-410X.1949.tb10773.x

    Article  CAS  PubMed  Google Scholar 

  6. Autorino R, Eden C, El-Ghoneimi A et al (2014) Robot-assisted and Laparoscopic repair of ureteropelvic junction obstruction: a systematic review and meta-analysis. Eur Urol 65:430–452. https://doi.org/10.1016/j.eururo.2013.06.053

    Article  PubMed  Google Scholar 

  7. Baek M, Silay MS, Au JK et al (2018) Quantifying the additional difficulty of pediatric robot-assisted laparoscopic re-do pyeloplasty: a comparison of primary and re-do procedures. Journal of Laparoendoscopic & Advanced Surgical Techniques 28:610–616. https://doi.org/10.1089/lap.2016.0691

    Article  Google Scholar 

  8. Bilen CY, Bayazit Y, Güdeloğlu A et al (2011) Laparoscopic pyeloplasty in adults: stented versus stentless. J Endourol 25:645–650. https://doi.org/10.1089/end.2010.0401

    Article  PubMed  Google Scholar 

  9. Bilgutay AN, Kirsch AJ (2019) Robotic ureteral reconstruction in the pediatric population. Front Pediatr 7:85. https://doi.org/10.3389/fped.2019.00085

    Article  PubMed  PubMed Central  Google Scholar 

  10. Corse TD, Dayan L, Cheng N et al (2023) A multi-institutional experience utilizing boari flap in robotic urinary reconstruction. J Endourol. https://doi.org/10.1089/end.2022.0618

    Article  PubMed  Google Scholar 

  11. Danuser H, Germann C, Pelzer N et al (2014) One- vs 4‑week stent placement after laparoscopic and robot-assisted pyeloplasty: results of a prospective randomised single-centre study. BJU Int 113:931–935. https://doi.org/10.1111/bju.12652

    Article  CAS  PubMed  Google Scholar 

  12. Drain A, Jun MS, Zhao LC (2021) Robotic Ureteral Reconstruction. Urol Clin N Am 48:91–101. https://doi.org/10.1016/j.ucl.2020.09.001

    Article  Google Scholar 

  13. Fan S, Han G, Li Z et al (2022) Robot-assisted laparoscopic ileal ureter replacement with extracorporeal ileal segment preparation for long ureteral strictures: a case series. BMC Surg 22:435. https://doi.org/10.1186/s12893-022-01885-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farouk A, Tawfick A, Kotb M et al (2016) Use of fibrin glue as a sealant at the anastomotic line in laparoscopic pyeloplasty: a randomised controlled trial. Arab J Urol 14:292–298. https://doi.org/10.1016/j.aju.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gembruch U, Hecher K, Steiner H (2018) Ultraschalldiagnostik in Geburtshilfe und Gynäkologie https://doi.org/10.1007/978-3-662-53662-9

    Book  Google Scholar 

  16. Gild P, Kluth LA, Vetterlein MW et al (2018) Adult iatrogenic ureteral injury and stricture-incidence and treatment strategies. Asian J Urol 5:101–106. https://doi.org/10.1016/j.ajur.2018.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gnech M, Berrettini A, Lopes RI et al (2019) Pyeloplasty vs. nephrectomy for ureteropelvic junction obstruction in poorly functioning kidneys (differential renal function 〈 20 %): a multicentric study. J Pediatr Urol 15:553.e1–553.e8. https://doi.org/10.1016/j.jpurol.2019.05.032

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez AN, Mishra K, Zhao LC (2022) Buccal Mucosal ureteroplasty for the management of ureteral strictures: patient selection and considerations. RRU 14:135–140. https://doi.org/10.2147/RRU.S291950

    Article  Google Scholar 

  19. Gustilo-Ashby AM, Paraiso MFR (2006) Treatment of urinary tract endometriosis. J Minim Invasive Gynecol 13:559–565. https://doi.org/10.1016/j.jmig.2006.07.012

    Article  PubMed  Google Scholar 

  20. Hemal AK, Mishra S, Mukharjee S, Suryavanshi M (2008) Robot assisted laparoscopic pyeloplasty in patients of ureteropelvic junction obstruction with previously failed open surgical repair: robotic pyeloplasty in failed UPJ repair. Int J Urol 15:744–746. https://doi.org/10.1111/j.1442-2042.2008.02091.x

    Article  PubMed  Google Scholar 

  21. Jensen PH, Berg KD, Azawi NH (2017) Robot-assisted pyeloplasty and pyelolithotomy in patients with ureteropelvic junction stenosis. Scand J Urol 51:323–328. https://doi.org/10.1080/21681805.2017.1300188

    Article  PubMed  Google Scholar 

  22. Kagadis GC, Siablis D, Liatsikos EN et al (2006) Virtual endoscopy of the urinary tract. Asian J Androl 8:31–38. https://doi.org/10.1111/j.1745-7262.2006.00096.x

    Article  PubMed  Google Scholar 

  23. Khan F, Ahmed K, Lee N et al (2014) Management of ureteropelvic junction obstruction in adults. Nat Rev Urol 11:629–638. https://doi.org/10.1038/nrurol.2014.240

    Article  PubMed  Google Scholar 

  24. Khawaja A, Dar T, Bashir F et al (2014) Stentless laparoscopic pyeloplasty: a single center experience. Urol Ann 6:202. https://doi.org/10.4103/0974-7796.134258

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lau KO, Hia TN, Cheng C, Tay SK (1998) Outcome of obstructive uropathy after pelvic irradiation in patients with carcinoma of the uterine cervix. Ann Acad Med Singap 27:631–635

    CAS  PubMed  Google Scholar 

  26. Lee RS, Retik AB, Borer JG, Peters CA (2006) Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol 175:683–687. https://doi.org/10.1016/S0022-5347(05)00183-7

    Article  PubMed  Google Scholar 

  27. Light A, Karthikeyan S, Maruthan S et al (2018) Peri-operative outcomes and complications after laparoscopic vs robot-assisted dismembered pyeloplasty: a systematic review and meta-analysis. BJU Int 122:181–194. https://doi.org/10.1111/bju.14170

    Article  PubMed  Google Scholar 

  28. Lin C‑W, Chen J‑C, Huang WJ, Lin T‑P (2022) Whole ureter replacement with yang-monti principle: successful treatment of challenging conditions. BMC Urol 22:198. https://doi.org/10.1186/s12894-022-01150-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendrek M, Vögeli TA, Bach C (2019) Recent advances in urologic surgical techniques for pyeloplasty. F1000Res 8:295. https://doi.org/10.12688/f1000research.15866.1

    Article  Google Scholar 

  30. Nakada SY, McDougall EM, Clayman RV (1995) Laparoscopic pyeloplasty for secondary ureteropelvic junction obstruction: preliminary experience. Urology 46:257–260. https://doi.org/10.1016/s0090-4295(99)80205-2

    Article  CAS  PubMed  Google Scholar 

  31. Orchard J, Tward JD, Lenherr S et al (2016) Surgical management of ureteral strictures arising from radiotherapy for prostate cancer. Urol Case Rep 6:47–49. https://doi.org/10.1016/j.eucr.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Reilly PH, Brooman PJC, Mak S et al (2001) The long-term results of anderson-Hynes pyeloplasty: long-term results of pyeloplasty. BJU Int 87:287–289. https://doi.org/10.1046/j.1464-410x.2001.00108.x

    Article  PubMed  Google Scholar 

  33. Savoie P‑H, Lechevallier E, Crochet P et al (2009) Traitement des sténoses de la jonction pyélo-urétérale par endopyélotomie rétrograde au laser holmium-yag. Progrès En Urol 19:27–32. https://doi.org/10.1016/j.purol.2008.07.008

    Article  Google Scholar 

  34. Shalhav AL, Mikhail AA, Orvieto MA et al (2007) Adult stentless laparoscopic pyeloplasty. JSLS 11:8–13

    PubMed  PubMed Central  Google Scholar 

  35. Soave A, Steurer S, Dahlem R et al (2014) Histopathological characteristics of buccal mucosa transplants in humans after engraftment to the urethra: a prospective study. J Urol 192:1725–1729. https://doi.org/10.1016/j.juro.2014.06.089

    Article  PubMed  Google Scholar 

  36. Somerville JJ, Naude JH (1984) Segmental ureteric replacement: an animal study using a free non-pedicled graft; Urol Res 12(2):115–119. https://doi.org/10.1007/BF00257176

  37. Sunaryo PL, May PC, Holt SK et al (2022) Ureteral strictures following ureteroscopy for kidney stone disease: a population-based assessment. J Urol 208:1268–1275. https://doi.org/10.1097/JU.0000000000002929

    Article  PubMed  Google Scholar 

  38. Tran H, Arsovska O, Paterson RF, Chew BH (2015) Evaluation of risk factors and treatment options in patients with ureteral stricture disease at a single institution. Can Urol Assoc J 9:E921–E924. https://doi.org/10.5489/cuaj.3057

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vasdev N, Moon A, Thorpe A (2013) Metabolic complications of urinary intestinal diversion. Indian J Urol 29:310. https://doi.org/10.4103/0970-1591.120112

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vasudevan VP, Johnson EU, Wong K et al (2019) Contemporary management of ureteral strictures. J Clin Urol 12:20–31. https://doi.org/10.1177/2051415818772218

    Article  Google Scholar 

  41. Wagner JR, Schimpf MO, Cohen JL (2008) Robot-assisted laparoscopic ileal ureter. JSLS 12:306–309

    PubMed  PubMed Central  Google Scholar 

  42. White C, Stifelman M (2020) Ureteral reimplantation, psoas hitch, and boari flap. J Endourol 34:S–25–S-30. https://doi.org/10.1089/end.2018.0750

    Article  Google Scholar 

  43. Xiong S, Zhu W, Li X et al (2020) Intestinal interposition for complex ureteral reconstruction: a comprehensive review. Int J Urol 27:377–386. https://doi.org/10.1111/iju.14222

    Article  PubMed  Google Scholar 

  44. Yang K, Fan S, Wang J et al (2022) robotic-assisted lingual mucosal graft ureteroplasty for the repair of complex ureteral strictures: technique description and the medium-term outcome. Eur Urol 81:533–540. https://doi.org/10.1016/j.eururo.2022.01.007

    Article  PubMed  Google Scholar 

  45. Zhang B, Wang H, Sun N et al (2011) Incidence, diagnosis and treatment of children’s congenital abnormalities of the kidney and urinary tract detected in ultrasound screening. Zhonghua Er Ke Za Zhi 49:534–538

    PubMed  Google Scholar 

  46. Zhao LC, Weinberg AC, Lee Z et al (2018) Robotic ureteral reconstruction using buccal mucosa grafts: a multi-institutional experience. Eur Urol 73:419–426. https://doi.org/10.1016/j.eururo.2017.11.015

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Rosenbaum.

Ethics declarations

Interessenkonflikt

S. Hook, A.J. Gross, C. Netsch, B. Becker, S. Filmar, M.W.V. Vetterlein, L.A. Kluth und C.M. Rosenbaum geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hook, S., Gross, A.J., Netsch, C. et al. Update Harnleiterrekonstruktion 2024. Urologie 63, 25–33 (2024). https://doi.org/10.1007/s00120-023-02232-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-023-02232-z

Schlüsselwörter

Keywords

Navigation