Skip to main content
Log in

Individualisierte Präzisionsmedizin

Individualized precision medicine

  • Leitthema
  • Published:
Die Urologie Aims and scope Submit manuscript

Zusammenfassung

Die personalisierte Medizin hat sich in einer spektakulären Art und Weise und mit enormer Geschwindigkeit zu einem Themenfeld entwickelt, das unser traditionelles Verständnis von Krankheitsdiagnose und Behandlung revolutioniert hat. Die molekulare Testung von Gewebe- und Flüssigproben mittels „next generation sequencing“ hat sich in diesem Szenario zu einer Schlüsseltechnologie entwickelt. Ihr Einsatz dient dabei sowohl der Bestimmung von Biomarkern für diagnostische, prognostische und prädiktive Zwecke, als auch der möglichen Verbesserung des Behandlungsoutcomes durch den Einsatz zielgerichteter Therapien einerseits und der Vermeidung von Therapien bei Vorliegen spezieller Resistenzsituationen andererseits. Neben bereits zugelassenen Medikamenten, die u. a. in die zelluläre DNA-Reparatur eingreifen, sind viele neue soweit entwickelt, dass sie die klinische Prüfung erreicht haben. Darüber hinaus haben neue Möglichkeiten der molekularen Bildgebung unser Verständnis der Tumorausbreitung bereits heute dramatisch erweitert und neue Ansätze für zielgerichtete Therapien geschaffen.

Abstract

Spectacular advances have been made in personalized medicine , which has rapidly revolutionized our traditional understanding of disease diagnosis and treatment. Molecular testing of tissue and liquid samples using next generation sequencing has developed into a key technology in this scenario. It can be used for both the determination of biomarkers for diagnostic, prognostic and predictive purposes, as well as the possible improvement of treatment outcome through the use of targeted therapies and the avoidance of therapies in the event of special resistance situations. In addition to drugs that have already been approved, which among other things intervene in cellular DNA repair, many new drugs have been developed and are in clinical testing. Furthermore, new possibilities in molecular imaging have dramatically expanded our understanding of tumor spread and created new approaches for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795. https://doi.org/10.1056/NEJMp1500523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang J, Nittala MR, Velazquez AE et al (2023) An overview of the use of precision population medicine in cancer care: first of a series. Cureus 15:e37889. https://doi.org/10.7759/cureus.37889

    Article  PubMed  PubMed Central  Google Scholar 

  3. Di Meo A, Bartlett J, Cheng Y et al (2017) Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 16:80. https://doi.org/10.1186/s12943-017-0644-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Connal S, Cameron JM, Sala A et al (2023) Liquid biopsies: the future of cancer early detection. J Transl Med 21:118. https://doi.org/10.1186/s12967-023-03960-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lieb V, Abdulrahman A, Weigelt K et al (2021) Cell-free DNA variant sequencing using plasma and AR-V7 testing of circulating tumor cells in prostate cancer patients. Cells. https://doi.org/10.3390/cells10113223

    Article  PubMed  PubMed Central  Google Scholar 

  6. Casanova-Salas I, Athie A, Boutros PC et al (2021) Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol 79:762–771. https://doi.org/10.1016/j.eururo.2020.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dieckmann KP, Radtke A, Geczi L et al (2019) Serum levels of MicroRNA-371a-3p (M371 test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J Clin Oncol 37:1412–1423. https://doi.org/10.1200/JCO.18.01480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scher HI, Lu D, Schreiber NA et al (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2:1441–1449. https://doi.org/10.1001/jamaoncol.2016.1828

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309. https://doi.org/10.1158/1078-0432.CCR-08-0872

    Article  CAS  PubMed  Google Scholar 

  10. Miller RW, Hutchcraft ML, Weiss HL et al (2022) Molecular tumor board-assisted care in an advanced cancer population: results of a phase II clinical trial. JCO Precis Oncol 6:e2100524. https://doi.org/10.1200/PO.21.00524

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eibl RH, Schneemann M (2022) Cell-free DNA as a biomarker in cancer. Extracell Vesicles Circ Nucleic Acids 3:178–198. https://doi.org/10.20517/evcna.2022.20

    Article  Google Scholar 

  12. Wang Z, Duan J, Cai S et al (2019) Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol 5:696–702. https://doi.org/10.1001/jamaoncol.2018.7098

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kato S, Weipert C, Gumas S et al (2021) Therapeutic actionability of circulating cell-free DNA alterations in carcinoma of unknown primary. JCO Precis Oncol. https://doi.org/10.1200/PO.21.00011

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uhr A, Glick L, Gomella LG (2020) An overview of biomarkers in the diagnosis and management of prostate cancer. Can J Urol 27:24–27

    PubMed  Google Scholar 

  15. Yu D, Li Y, Wang M et al (2022) Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 21:56. https://doi.org/10.1186/s12943-022-01509-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Dindorf J, Eberhardt M et al (2019) Innate extracellular vesicles from melanoma patients suppress beta-catenin in tumor cells by miRNA-34a. Life Sci Alliance. https://doi.org/10.26508/lsa.201800205

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao Y, Oreskovic E, Zhang Q et al (2021) Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 22:1219–1230. https://doi.org/10.1038/s41590-021-01027-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49:668–679. https://doi.org/10.1016/j.molcel.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Lee JH, Ostalecki C, Oberstein T et al (2022) Alzheimer’s disease protease-containing plasma extracellular vesicles transfer to the hippocampus via the choroid plexus. eBioMedicine 77:103903. https://doi.org/10.1016/j.ebiom.2022.103903

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parpart-Li S, Bartlett B, Popoli M et al (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23:2471–2477. https://doi.org/10.1158/1078-0432.CCR-16-1691

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  23. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656. https://doi.org/10.1016/j.cell.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pritchard CC, Mateo J, Walsh MF et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453. https://doi.org/10.1056/NEJMoa1603144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228. https://doi.org/10.1016/j.cell.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134. https://doi.org/10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  27. de Bono J, Mateo J, Fizazi K et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091–2102. https://doi.org/10.1056/NEJMoa1911440

    Article  PubMed  Google Scholar 

  28. Ryan CJ, Abida W, Bryce AH et al (2018) TRITON3: an international, randomized, open-label, phase III study of the PARP inhibitor rucaparib vs. physician’s choice of therapy for patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J Clin Oncol. https://doi.org/10.1200/JCO.2018.36.6_suppl.TPS389

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Bono JS, Mehra N, Scagliotti GV et al (2021) Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 22:1250–1264. https://doi.org/10.1016/S1470-2045(21)00376-4

    Article  PubMed  Google Scholar 

  30. Chi KN, Rathkopf D, Smith MR et al (2023) Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J Clin Oncol. https://doi.org/10.1200/JCO.22.01649

    Article  PubMed  PubMed Central  Google Scholar 

  31. Clarke NW, Armstrong AJ, Thiery-Vuillemin A et al (2022) Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. https://doi.org/10.1056/EVIDoa2200043

    Article  Google Scholar 

  32. Farmer H, Mccabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. https://doi.org/10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  33. Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science 355:1152–1158. https://doi.org/10.1126/science.aam7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iglehart JD, Silver DP (2009) Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 361:189–191. https://doi.org/10.1056/NEJMe0903044

    Article  CAS  PubMed  Google Scholar 

  35. Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pommier Y, O’connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8:362ps17. https://doi.org/10.1126/scitranslmed.aaf9246

    Article  CAS  PubMed  Google Scholar 

  37. Rundle S, Bradbury A, Drew Y et al (2017) Targeting the ATR-CHK1 axis in cancer therapy. Cancers (Basel). https://doi.org/10.3390/cancers9050041

    Article  PubMed  Google Scholar 

  38. Durant ST, Zheng L, Wang Y et al (2018) The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv 4:eaat1719. https://doi.org/10.1126/sciadv.aat1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aarts M, Sharpe R, Garcia-Murillas I et al (2012) Forced mitotic entry of S‑phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2:524–539. https://doi.org/10.1158/2159-8290.CD-11-0320

    Article  CAS  PubMed  Google Scholar 

  40. Ellis PM, Leighl NB, Hirsh V et al (2015) A randomized, open-label phase II trial of volasertib as monotherapy and in combination with standard-dose pemetrexed compared with pemetrexed monotherapy in second-line treatment for non-small-cell lung cancer. Clin Lung Cancer 16:457–465. https://doi.org/10.1016/j.cllc.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  41. Zeidan AM, Ridinger M, Lin TL et al (2020) A phase Ib study of onvansertib, a novel oral PLK1 inhibitor, in combination therapy for patients with relapsed or refractory acute myeloid leukemia. Clin Cancer Res 26:6132–6140. https://doi.org/10.1158/1078-0432.CCR-20-2586

    Article  CAS  PubMed  Google Scholar 

  42. Dominguez-Valentin M, Joost P, Therkildsen C et al (2016) Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. BMC Urol 16:15. https://doi.org/10.1186/s12894-016-0130-1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raymond VM, Mukherjee B, Wang F et al (2013) Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31:1713–1718. https://doi.org/10.1200/JCO.2012.44.1238

    Article  PubMed  PubMed Central  Google Scholar 

  44. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357:409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495. https://doi.org/10.1007/s00259-012-2298-2

    Article  CAS  PubMed  Google Scholar 

  46. Afshar-Oromieh A, Zechmann CM, Malcher A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20. https://doi.org/10.1007/s00259-013-2525-5

    Article  CAS  PubMed  Google Scholar 

  47. Fendler WP, Eiber M, Beheshti M et al (2023) PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging 50:1466–1486. https://doi.org/10.1007/s00259-022-06089-w

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216. https://doi.org/10.1016/S0140-6736(20)30314-7

    Article  CAS  PubMed  Google Scholar 

  49. Hope TA, Eiber M, Armstrong WR et al (2021) Diagnostic accuracy of 68ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol 7:1635–1642. https://doi.org/10.1001/jamaoncol.2021.3771

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pienta KJ, Gorin MA, Rowe SP et al (2021) A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with (18)F-DCFPyL in prostate cancer patients (OSPREY). J Urol 206:52–61. https://doi.org/10.1097/JU.0000000000001698

    Article  PubMed  PubMed Central  Google Scholar 

  51. Phillips R, Shi WY, Deek M et al (2020) Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol 6:650–659. https://doi.org/10.1001/jamaoncol.2020.0147

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fendler WP, Weber M, Iravani A et al (2019) Prostate-specific membrane antigen ligand positron emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin Cancer Res 25:7448–7454. https://doi.org/10.1158/1078-0432.CCR-19-1050

    Article  CAS  PubMed  Google Scholar 

  53. Kratochwil C, Fendler WP, Eiber M et al (2019) EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 46:2536–2544. https://doi.org/10.1007/s00259-019-04485-3

    Article  PubMed  Google Scholar 

  54. Hofman MS, Violet J, Hicks RJ et al (2018) [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833. https://doi.org/10.1016/S1470-2045(18)30198-0

    Article  CAS  PubMed  Google Scholar 

  55. Afshar-Oromieh A, Hetzheim H, Kratochwil C et al (2015) The theranostic PSMA Ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 56:1697–1705. https://doi.org/10.2967/jnumed.115.161299

    Article  CAS  PubMed  Google Scholar 

  56. Ahmadzadehfar H, Rahbar K, Kurpig S et al (2015) Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 5:114. https://doi.org/10.1186/s13550-015-0114-2

    Article  CAS  PubMed  Google Scholar 

  57. Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90. https://doi.org/10.2967/jnumed.116.183194

    Article  CAS  PubMed  Google Scholar 

  58. Hofman MS, Emmett L, Sandhu S et al (2021) [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397:797–804. https://doi.org/10.1016/S0140-6736(21)00237-3

    Article  CAS  PubMed  Google Scholar 

  59. Jang A, Kendi AT, Sartor O (2023) Status of PSMA-targeted radioligand therapy in prostate cancer: current data and future trials. Ther Adv Med Oncol 15:17588359231157632. https://doi.org/10.1177/17588359231157632

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ramnaraign B, Sartor O (2023) PSMA-targeted radiopharmaceuticals in prostate cancer: current data and new trials. Oncologist 28:392–401. https://doi.org/10.1093/oncolo/oyac279

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang S, Gao D, Chen Y (2017) The potential of organoids in urological cancer research. Nat Rev Urol 14:401–414. https://doi.org/10.1038/nrurol.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee SH, Hu W, Matulay JT et al (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173:515–528.e17. https://doi.org/10.1016/j.cell.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drost J, Karthaus WR, Gao D et al (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11:347–358. https://doi.org/10.1038/nprot.2016.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Minoli M, Cantore T, Hanhart D et al (2023) Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun 14:2214. https://doi.org/10.1038/s41467-023-37696-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Wullich.

Ethics declarations

Interessenkonflikt

B. Wullich, H. Taubert, P.J. Goebell, T. Kuwert, M. Beck, C. Schott, A.S. Baur, M. Eckstein und S. Wach geben an, dass im Zusammenhang mit der vorgelegten Arbeit kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wullich, B., Taubert, H., Goebell, P.J. et al. Individualisierte Präzisionsmedizin. Urologie 62, 879–888 (2023). https://doi.org/10.1007/s00120-023-02151-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-023-02151-z

Schlüsselwörter

Keywords

Navigation