Skip to main content

Advertisement

Log in

Zielgerichtete Therapieoptionen in der Uroonkologie

Precision oncology options in urological cancers

  • Leitthema
  • Published:
Die Urologie Aims and scope Submit manuscript

Zusammenfassung

Fortschritte im molekulargenetischen Verständnis uroonkologischer Tumorerkrankungen ermöglichen die Identifikation zahlreicher neuer therapeutischer Zielstrukturen. Auf Grundlage routinemäßig anwendbarer Tumorsequenzierungen werden individuelle Therapieentscheidungen im Sinne der Präzisionsonkologie ermöglicht. In dieser Arbeit soll ein Überblick über die neuesten zielgerichteten Tumortherapien in der Behandlung des Prostata‑, Urothel- und Nierenzellkarzinoms gegeben werden. Es werden aktuelle Studien zur Anwendung von FGFR-Inhibitoren („fibroblast growth factor receptor“) im metastasierten Urothelkarzinom diskutiert, welche ein hohes Tumoransprechen bei Patienten mit FGFR-Mutationen zeigen. PARP-Inhibitoren („Poly-[ADP-Ribose-]Polymerase“) finden Anwendung in der Therapie des metastasierten Prostatakarzinoms, insbesondere Patienten mit einer BRCA-Mutation („BReast CAncer gene“) weisen hohe radiologische Ansprechraten auf, wobei auch zuletzt veröffentlichte Ergebnisse zu Kombinationstherapien von PARP-Inhibitoren mit einer der neuen antihormonellen Substanz diskutiert werden. Darüber hinaus werden Studien im Stadium des metastasierten Prostatakarzinoms, in denen Medikamente, welche die PI3K (Phosphatidylinositol-3-Kinase)/AKT/mTOR („mammalian target of rapamycine“)- und VEGF-Signalwegskaskaden („vascular endothelial growth factor“) verändern, zusammengefasst und deren therapeutische Potenziale dargestellt. Beim metastasierten Nierenzellkarzinom bietet ein HIF-2a-Inhibitor („hypoxia inducible factor“) eine vielversprechende neue therapeutische Option. Die molekulare Diagnostik zur Therapiefindung für Patientensubgruppen zum richtigen Zeitpunkt nimmt einen immer wichtigeren Stellenwert in der uroonkologischen Präzisionsmedizin ein.

Abstract

Advancements in the molecular genetic understanding of urological tumors have enabled the identification of numerous new therapeutic targets. Based on routinely applicable tumor sequencing, individual treatment decisions have been introduced in the context of precision oncology. This work provides an overview of the latest targeted tumor therapies in the treatment of prostate cancer, urothelial carcinoma, and renal cell carcinoma. Current studies on the administration of FGFR-inhibitors (“fibroblast growth factor receptor”) in metastatic urothelial carcinoma show a high tumor response in patients with selected FGFR alterations. PARP-inhibitors (“Poly-[ADP-Ribose-]Polymerase”) are routinely used in the treatment of metastatic prostate cancer. Patients with a BRCA mutation (“BReast CAncer gene”) show high radiological response rates. Moreover, we discuss the latest results of the combination of PARP inhibitors with novel androgen receptor pathway inhibitors. In metastatic prostate cancer, there are numerous ongoing studies evaluating the promising drug targets PI3K/AKT/mTOR (“Phosphatidylinositol-3-Kinase”)/AKT/mTOR (“mammalian target of rapamycine”) and VEGF signaling pathways (“vascular endothelial growth factor”). A HIF-2a inhibitor (“hypoxia inducible factor”) offers a promising new therapeutic option for metastatic renal cell carcinoma. Overall, molecular diagnostics to determine the right therapy for the right patient subgroup at the right time is important for uro-oncological precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41

    CAS  PubMed  Google Scholar 

  3. Ibrahim T, Gizzi M, Bahleda R, Loriot Y (2019) Clinical development of FGFR3 inhibitors for the treatment of urothelial cancer. Bladder Cancer 5:87–102

    Article  Google Scholar 

  4. Hernández S, López-Knowles E, Lloreta J, Kogevinas M, Amorós A, Tardón A et al (2006) Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 24:3664–3671

    Article  PubMed  Google Scholar 

  5. Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R et al (2020) A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 77:420–433

    Article  PubMed  Google Scholar 

  6. Kim K, Hu W, Audenet F, Almassi N, Hanrahan AJ, Murray K et al (2020) Modeling biological and genetic diversity in upper tract urothelial carcinoma with patient derived xenografts. Nat Commun 11:1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S et al (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19:666–675

    Article  CAS  PubMed  Google Scholar 

  8. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E et al (2019) Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 381:338–348

    Article  CAS  PubMed  Google Scholar 

  9. Daneshmand S, Grivas P, Sridhar SS, Gupta S, Bellmunt J, Sonpavde G et al (2020) PROOF 302: a randomized, double-blind, placebo-controlled, phase III trial of infigratinib as adjuvant therapy in patients with invasive urothelial carcinoma harboring susceptible FGFR3 alterations. J Clin Oncol 38:TPS5095

    Article  Google Scholar 

  10. Sternberg CN, Petrylak DP, Bellmunt J, Nishiyama H, Necchi A, Gurney H et al (2023) FORT-1: Phase II/III study of rogaratinib versus chemotherapy in patients with locally advanced or metastatic urothelial carcinoma selected based on FGFR1/3 mRNA expression. J Clin Oncol 41:629–639

    Article  CAS  PubMed  Google Scholar 

  11. Necchi A, Pouessel D, Leibowitz-Amit R, Flechon A, Gupta S, Barthelemy P et al (2018) Interim results of fight-201, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with metastatic or surgically unresectable urothelial carcinoma (UC) harboring fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations (GA). Ann Oncol 29:viii319–viii320

    Article  Google Scholar 

  12. Javle M, Roychowdhury S, Kelley RK, Sadeghi S, Macarulla T, Weiss KH et al (2021) Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol 6:803–815

    Article  PubMed  Google Scholar 

  13. Jing W, Wang G, Cui Z, Xiong G, Jiang X, Li Y et al (2022) FGFR3 destabilizes PD-L1 via NEDD4 to control T‑cell–mediated bladder cancer immune surveillance. Cancer Res 82:114–129

    Article  CAS  PubMed  Google Scholar 

  14. Palakurthi S, Kuraguchi M, Zacharek SJ, Zudaire E, Huang W, Bonal DM et al (2019) The combined effect of FGFR inhibition and PD‑1 blockade promotes tumor-intrinsic induction of antitumor immunityErdafitinib plus anti—PD‑1 enhances antitumor responses. Cancer Immunol Res 7:1457–1471

    Article  CAS  PubMed  Google Scholar 

  15. Powles TB, Chistyakov V, Beliakouski V, Semenov A, Everaert E, Baranau Y et al (2021) LBA27 Erdafitinib (ERDA) or ERDA plus cetrelimab (CET) for patients with metastatic or locally advanced urothelial carcinoma (mUC) and Fibroblast Growth Factor Receptor alterations (FGFRa): First phase (Ph) II results from the NORSE study. Ann Oncol 32:S1303

    Article  Google Scholar 

  16. Cancer Genome Atlas Research Network (2015) The molecular taxonomy of primary prostate cancer. Cell 163:1011–1025

    Article  Google Scholar 

  17. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091–2102

    Article  PubMed  Google Scholar 

  18. Robinson D, Van Allen EM, Wu Y‑M, Schultz N, Lonigro RJ, Mosquera J‑M et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I et al (2019) Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 116:11428–11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horak P, Weischenfeldt J, von Amsberg G, Beyer B, Schütte A, Uhrig S et al (2019) Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. https://doi.org/10.1101/mcs.a003657

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19:975–986

    Article  CAS  PubMed  Google Scholar 

  23. Chi KN, Rathkopf DE, Smith MR, Efstathiou E, Attard G, Olmos D et al (2022) Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. J Clin Oncol 40:12–12

    Article  Google Scholar 

  24. Krohn A, Diedler T, Burkhardt L, Mayer P‑S, De Silva C, Meyer-Kornblum M et al (2012) Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol 181:401–412

    Article  CAS  PubMed  Google Scholar 

  25. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA et al (2018) Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 15:222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S et al (2021) Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet 398:131–142

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal N, McGregor B, Maughan BL, Dorff TB, Kelly W, Fang B et al (2022) Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol 23:899–909

    Article  CAS  PubMed  Google Scholar 

  28. Grimm M-O, Foller S, Leeder M, Leucht K (2023) Antikörper-Wirkstoff-Konjugate als neues Wirkprinzip in der Uroonkologie. Die Urologie. https://doi.org/10.1007/s00120-023-02118-0

  29. Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL et al (2021) Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med 385:2036–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fizazi K, Piulats JM, Reaume MN, Ostler P, McDermott R, Gingerich JR et al (2023) Rucaparib or physician’s choice in metastatic prostate cancer. N Engl J Med 388:719–732

    Article  CAS  PubMed  Google Scholar 

  31. Abida W, Patnaik A, Campbell D, Shapiro J, Bryce AH, McDermott R et al (2020) Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 38:3763–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith MR, Sandhu SK, Kelly WK, Scher HI, Efstathiou E, Lara PN et al (2019) Pre-specified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD). Ann Oncol 30:v884–v885

    Article  Google Scholar 

  33. de Bono JS, Mehra N, Scagliotti GV, Castro E, Dorff T, Stirling A et al (2021) Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 22:1250–1264

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira Kornienko.

Ethics declarations

Interessenkonflikt

A. Franz, H. Plage, A. Fendler, T. Schlomm und K. Kornienko geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, A., Plage, H., Fendler, A. et al. Zielgerichtete Therapieoptionen in der Uroonkologie. Urologie 62, 696–704 (2023). https://doi.org/10.1007/s00120-023-02119-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-023-02119-z

Schlüsselwörter

Keywords

Navigation