Skip to main content
Log in

Häufige Fehler, „Pitfalls“ und Komplikationsmanagement der Prostatabiopsie

Die häufigsten diagnostischen und prozeduralen Herausforderungen der transrektalen Fusionsbiopsie der Prostata bei Erstdiagnose eines klinisch signifikanten Prostatakarzinoms

Common errors, pitfalls, and management of complications of prostate biopsy

The most common diagnostic and procedural challenges of transrectal fusion prostate biopsy in the initial diagnosis of clinically significant prostate cancer

  • Leitthema
  • Published:
Die Urologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die transrektale (TR) Prostatastanzbiopsie ist der bisherige Goldstandard in der Diagnostik des Prostatakarzinoms (PCa) und stellt hohe Anforderungen an Untersucher, um eine möglichst präzise und sichere Durchführung sicherzustellen.

Fragestellung

Es werden Ansätze diskutiert, wie Überdiagnostik, falsch-negative Ergebnisse und Komplikationen vermieden werden können.

Material und Methoden

Nationale und europäische Leitlinien sowie mehrere systematische Übersichtsarbeiten, Metaanalysen, prospektive und retrospektive Studien werden hinsichtlich der aktuellen Entwicklungstendenzen in der Indikationsstellung und Durchführung von Biopsien analysiert.

Ergebnisse

Die Anwendung von Risikokalkulatoren und Magnetresosnanztomographie (MRT) trägt maßgeblich zur Reduktion der Prostatabiopsieraten und somit zu einer präziseren Diagnostik klinisch signifikanter PCa (csPCa) bei. Die höchste diagnostische Sicherheit der Biopsie kann durch die Kombination von randomisierter und MRT-gesteuerter Fusionsbiopsie (FBx), Radiuserweiterung der Target-Biopsie um 10 mm und einen transperinealen (TP-)Zugang erreicht werden. Blutungsereignisse treten nach der Prostatabiopsie am häufigsten auf und sind in der Regel selbstlimitierend. Das Infektionsrisiko kann durch eine TP-Probenentnahme reduziert werden.

Schlussfolgerung

Die TR MRT-gestützte FBx der Prostata ist eine gut bewährte Methode in der Primärdiagnostik von csPCa. Eine höhere Präzision und Sicherheit können durch einen TP-Zugang erreicht werden.

Abstract

Background

Transrectal (TR) prostate biopsy is the gold standard in diagnosis of prostate cancer (PC). It requires a precise and safe technique for sample acquisition.

Objective

Several approaches will be discussed to avoid overdiagnosis, false-negative results, and complications of the procedure.

Materials and methods

We analyzed national and European guidelines, systematic reviews, meta-analyses, as well as prospective and retrospective studies to describe current trends in indication and performance of biopsies.

Results

Incorporation of risk calculators and magnetic resonance imaging (MRI) into daily routine reduces biopsy rates and results in a more precise diagnosis of clinically significant prostate cancer (csPC). Combination of random- and MRI-fusion guided biopsy—but also extending the radius of sampling by 10 mm beyond the MRI lesion and a transperineal (TP) sampling approach – lead to a higher tumor-detection rate. Bleeding is the most common complication after prostate biopsy and is usually self-limiting. Postbiopsy infection rates can be reduced through TP biopsy.

Conclusion

TR MRI-fusion guided biopsy is a widely acknowledged tool in primary diagnostics of csPC. Higher detection rates and safety can be achieved through a TP sampling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Welch HG, Albertsen PC (2020) Reconsidering prostate cancer mortality—the future of PSA screening. N Engl J Med 382(16):1557–1563

    Article  PubMed  Google Scholar 

  2. McNeal JE et al (1986) Patterns of progression in prostate cancer. Lancet 1(8472):60–63

    Article  CAS  PubMed  Google Scholar 

  3. Matoso A, Epstein JI (2019) Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 74(1):135–145

    Article  PubMed  Google Scholar 

  4. Bill-Axelson A et al (2018) Radical prostatectomy or watchful waiting in prostate cancer—29-year follow-up. N Engl J Med 379(24):2319–2329

    Article  PubMed  Google Scholar 

  5. Hugosson J et al (2019) A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur Urol 76(1):43–51

    Article  PubMed  PubMed Central  Google Scholar 

  6. EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam 2022.

  7. Roobol MJ et al (2017) Improving the Rotterdam European randomized study of screening for prostate cancer risk calculator for initial prostate biopsy by incorporating the 2014 international society of urological pathology Gleason grading and Cribriform growth. Eur Urol 72(1):45–51

    Article  PubMed  Google Scholar 

  8. Jue JS et al (2017) Re-examining prostate-specific antigen (PSA) density: defining the optimal PSA range and patients for using PSA density to predict prostate cancer using extended template biopsy. Urology 105:123–128

    Article  PubMed  Google Scholar 

  9. Wagensveld IM et al (2022) A prospective multicenter comparison study of risk-adapted ultrasound-directed and magnetic resonance imaging-directed diagnostic pathways for suspected prostate cancer in biopsy-naïve men. Eur Urol 82(3):318–326

    Article  CAS  PubMed  Google Scholar 

  10. Mannaerts CK et al (2018) Prostate cancer risk assessment in biopsy-naïve patients: the Rotterdam prostate cancer risk calculator in multiparametric magnetic resonance imaging-Transrectal ultrasound (TRUS) fusion biopsy and systematic TRUS biopsy. Eur Urol Oncol 1(2):109–117

    Article  PubMed  Google Scholar 

  11. Falagario UG et al (2020) Avoiding unnecessary magnetic resonance imaging (MRI) and biopsies: negative and positive predictive value of MRI according to prostate-specific antigen density, 4Kscore and risk calculators. Eur Urol Oncol 3(5):700–704

    Article  PubMed  Google Scholar 

  12. Kasivisvanathan V et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378(19):1767–1777

    Article  PubMed  PubMed Central  Google Scholar 

  13. Drost FH et al (2019) Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012663.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cuocolo R et al (2021) Clinically significant prostate cancer detection with biparametric MRI: a systematic review and meta-analysis. AJR Am J Roentgenol 216(3):608–621

    Article  PubMed  Google Scholar 

  15. Kang Z et al (2019) Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 212(2):357–365

    Article  PubMed  Google Scholar 

  16. Deutsche Gesellschaft für Urologie (DGU). S3-Leitlinie Prostatakarzinom. Oktober 2021; Langversion 6.2.:[Available from: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Prostatatkarzinom/Version_6/LL_Prostatakarzinom_Langversion_6.2.pdf.

  17. Turkbey B et al (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76(3):340–351

    Article  PubMed  Google Scholar 

  18. Kang HC et al (2021) Accuracy of prostate magnetic resonance imaging: reader experience matters. Eur Urol Open Sci 27:53–60

    Article  PubMed  PubMed Central  Google Scholar 

  19. Greer MD et al (2017) Accuracy and agreement of PIRADSv2 for prostate cancer mpMRI: a multireader study. J Magn Reson Imaging 45(2):579–585

    Article  PubMed  Google Scholar 

  20. Chatterjee A, Thomas S, Oto A (2020) Prostate MR: pitfalls and benign lesions. Abdom Radiol 45(7):2154–2164

    Article  Google Scholar 

  21. Franiel T et al (2021) mpMRI of the prostate (MR-Prostatography): updated recommendations of the DRG and BDR on patient preparation and scanning protocol. Rofo 193(7):763–777

    PubMed  Google Scholar 

  22. Apfelbeck M et al (2020) Predictive clinical features for negative histopathology of MRI/Ultrasound-fusion-guided prostate biopsy in patients with high likelihood of cancer at prostate MRI: Analysis from a urologic outpatient clinic1. Clin Hemorheol Microcirc 76(4):503–511

    Article  CAS  PubMed  Google Scholar 

  23. Chaloupka M et al (2023) Radical prostatectomy without prior biopsy in patients with high suspicion of prostate cancer based on multiparametric magnetic resonance imaging and prostate-specific membrane antigen positron emission tomography: a prospective cohort study. Cancers 15:1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watts KL et al (2020) Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol 38(9):734.e19–734.e25

    Article  PubMed  Google Scholar 

  25. Sigle A et al (2022) Image-guided biopsy of the prostate gland. Urologie 61(10):1137–1148

    Article  PubMed  Google Scholar 

  26. Halstuch D et al (2019) Characterizing the learning curve of MRI-US fusion prostate biopsies. Prostate Cancer Prostatic Dis 22(4):546–551

    Article  PubMed  Google Scholar 

  27. Hagens MJ et al (2022) Diagnostic performance of a magnetic resonance imaging-directed targeted plus regional biopsy approach in prostate cancer diagnosis: a systematic review and meta-analysis. Eur Urol Open Sci 40:95–103

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahdoot M et al (2020) MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 382(10):917–928

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel AR, Jones JS (2009) Optimal biopsy strategies for the diagnosis and staging of prostate cancer. Curr Opin Urol 19(3):232–237

    Article  PubMed  Google Scholar 

  30. Brisbane WG et al (2022) Targeted prostate biopsy: umbra, penumbra, and value of perilesional sampling. Eur Urol 82(3):303–310

    Article  PubMed  Google Scholar 

  31. McNeal JE et al (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12(12):897–906

    Article  CAS  PubMed  Google Scholar 

  32. Schouten MG et al (2017) Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and Transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur Urol 71(6):896–903

    Article  PubMed  Google Scholar 

  33. Mabjeesh NJ et al (2012) High detection rate of significant prostate tumours in anterior zones using transperineal ultrasound-guided template saturation biopsy. BJU Int 110(7):993–997

    Article  PubMed  Google Scholar 

  34. Tu X et al (2019) Transperineal magnetic resonance imaging-targeted biopsy May perform better than transrectal route in the detection of clinically significant prostate cancer: systematic review and meta-analysis. Clin Genitourin Cancer 17(5):e860–e870

    Article  PubMed  Google Scholar 

  35. Bennett HY et al (2016) The global burden of major infectious complications following prostate biopsy. Epidemiol Infect 144(8):1784–1791

    Article  CAS  PubMed  Google Scholar 

  36. Wagenlehner FM et al (2013) Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol 63(3):521–527

    Article  PubMed  Google Scholar 

  37. Derin O et al (2020) Infectious complications of prostate biopsy: winning battles but not war. World J Urol 38(11):2743–2753

    Article  PubMed  Google Scholar 

  38. Pilatz A et al (2020) Antibiotic prophylaxis for the prevention of infectious complications following prostate biopsy: a systematic review and meta-analysis. J Urol 204(2):224–230

    Article  PubMed  Google Scholar 

  39. Loeb S et al (2012) Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur Urol 61(6):1110–1114

    Article  PubMed  Google Scholar 

  40. Dalhoff A (2012) Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012:976273

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rote-Hand-Brief zu Fosfuro 3000mg.

  42. Liss MA et al (2011) Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J Urol 185(4):1283–1288

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pradere B et al (2021) Nonantibiotic strategies for the prevention of infectious complications following prostate biopsy: a systematic review and meta-analysis. J Urol 205(3):653–663

    Article  PubMed  Google Scholar 

  44. Loeb S et al (2013) Systematic review of complications of prostate biopsy. Eur Urol 64(6):876–892

    Article  PubMed  Google Scholar 

  45. Raaijmakers R et al (2002) Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology 60(5):826–830

    Article  PubMed  Google Scholar 

  46. Sefik E et al (2020) The effect of alpha blocker treatment prior to prostate biopsy on voiding functions, pain scores and health-related quality-of-life outcomes: A prospective randomized trial. Prog Urol 30(4):198–204

    Article  CAS  PubMed  Google Scholar 

  47. Manoharan M et al (2007) Hemospermia following transrectal ultrasound-guided prostate biopsy: a prospective study. Prostate Cancer Prostatic Dis 10(3):283–287

    Article  CAS  PubMed  Google Scholar 

  48. Braun KP et al (2007) Endoscopic therapy of a massive rectal bleeding after prostate biopsy. Int Urol Nephrol 39(4):1125–1129

    Article  PubMed  Google Scholar 

  49. Tiong HY et al (2007) A meta-analysis of local anesthesia for transrectal ultrasound-guided biopsy of the prostate. Prostate Cancer Prostatic Dis 10(2):127–136

    Article  CAS  PubMed  Google Scholar 

  50. Tekdogan U et al (2008) Is the pain level of patients affected by anxiety during transrectal prostate needle biopsy? Scand J Urol Nephrol 42(1):24–28

    Article  PubMed  Google Scholar 

  51. Mumm JN et al (2021) Listening to music during outpatient cystoscopy reduces pain and anxiety and increases satisfaction: results from a prospective randomized study. Urol Int 105(9-10):792–798

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benazir Enzinger.

Ethics declarations

Interessenkonflikt

B. Enzinger, P.L. Pfitzinger, B. Ebner, T. Ivanova, Y. Volz, M. Apfelbeck, P. Kazmierczak, C. Stief und M. Chaloupka geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enzinger, B., Pfitzinger, P.L., Ebner, B. et al. Häufige Fehler, „Pitfalls“ und Komplikationsmanagement der Prostatabiopsie. Urologie 62, 479–486 (2023). https://doi.org/10.1007/s00120-023-02063-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-023-02063-y

Schlüsselwörter

Keywords

Navigation