Skip to main content
Log in

Robotik und intraoperative Navigation

Robotics and intraoperative navigation

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Das Fach der Urologie war seit jeher eng mit dem technologischen Fortschritt verbunden und besonders die letzten Jahrzehnte führten zu einem vermehrten Einsatz verschiedenster Technologien und Innovationen in den einzelnen Teilbereichen der Urologie. Während die konventionelle Laparoskopie zunehmen durch roboterunterstützte Verfahren ersetzt wird und hier v. a. die Einführung neuer robotischer Systeme verschiedener Hersteller erfolgt und erfolgen wird, finden die meisten Eingriffe in der Endourologie noch vielfach ohne diese Assistenzsysteme statt. Auch hier setzten sich jedoch neue Systeme wie z. B. die autonome robotergesteuerte hydraulische Ablation (Aquablation) der Prostata immer mehr durch und zahlreiche Entwicklungsprojekte werden auch hier in den kommenden Jahren die klinische Versorgung maßgeblich verändern. Hinzu kommt, dass eine fortschreitende Kombination der robotischen Unterstützung mit intraoperativer Navigation durch die Integration von Bildgebung und AR- und VR-Technologie zu erwarten ist. Erfolgreich eingesetzt wird diese Kombination aus Navigation und robotischer Technologie bereits im Bereich der Fusionsbiopsie der Prostata.

Abstract

Urology has always been closely linked to technological progress. In the last few decades, we have witnessed increasing implementation of various technologies and innovations in subdisciplines of urology. While conventional laparoscopy is increasingly being replaced by robot-assisted procedures and the introduction of new robotic systems from various manufactures will continue for years, the field of endourolgy is still not dominated by robotic systems. However, new systems (e.g., autonomous, robot-controlled aquablation of the prostate) are becoming increasingly popular and numerous development projects will also probably change clinical care in coming years. In addition, further advancements in the combination of robotics with intraoperative navigation through the integration of imaging and augmented-reality (AR) and virtual reality (VR) technology can be expected. This combination of navigation and robotic technology is already being used successfully in prostate biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Alexander A III (1973) Impacts of telemation on modern society

    Google Scholar 

  2. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380

    Article  CAS  Google Scholar 

  3. Reichenspurner H, Damiano RJ, Mack M, Boehm DH, Gulbins H, Detter C et al (1999) Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. J Thorac Cardiovasc Surg 118(1):11–16

    Article  CAS  Google Scholar 

  4. Mohr FW, Falk V, Diegeler A, Autschback R (1999) Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg 117(6):1212–1214

    Article  CAS  Google Scholar 

  5. Schurr MO, Arezzo A, Buess GF (1999) Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. Eur J Cardiothorac Surg 16(Suppl 2):S97–S105

    PubMed  Google Scholar 

  6. Klodmann J, Schlenk C, Borsdorf S, Unterhinninghofen R, Albu-Schäffer A, Hirzinger G (2020) Robotische Assistenzsysteme für die Chirurgie. Chirurg. https://doi.org/10.1007/s00104-020-01205-8

    Article  PubMed  Google Scholar 

  7. Menon M, Shrivastava A, Tewari A, Sarle R, Hemal A, Peabody JO et al (2002) Laparoscopic and robot assisted radical prostatectomy: establishment of a structured program and preliminary analysis of outcomes. J Urol 168(3):945–949

    Article  Google Scholar 

  8. Crew B (2020) Worth the cost? A closer look at the da Vinci robot’s impact on prostate cancer surgery. Nature 580(7804):S5

    Article  CAS  Google Scholar 

  9. Rassweiler JJ, Serdar GA, Klein J, Rassweiler-Seyfried M‑C (2019) 50 Jahre Minimal-invasive Chirurgie in der Urologie. Aktuel Urol 50(06):593–605

    Article  Google Scholar 

  10. Franz T, Rassweiler JJ, Liatsikos E, Kyriazis I, Bach T, Siemer S et al (2019) Roboterassistierte Systeme der Gegenwart. Uro-News 23(3):24–29

    Article  Google Scholar 

  11. Gözen A, Rassweiler J (2020) Robotische Chirurgie in der Urologie. Urologe. https://doi.org/10.1007/s00120-020-01293-8

    Article  Google Scholar 

  12. van Mulken TJ, Schols RM, Scharmga AM, Winkens B, Cau R, Schoenmakers FB et al (2020) First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun 11(1):1–7

    Article  Google Scholar 

  13. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU et al (2017) Future of robotic surgery in urology. BJU Int 120(6):822–841

    Article  Google Scholar 

  14. Hodgson D (2015) John Wickham: the godfather of robotic surgery. Trends Urol Men Health 6(6):33–34

    Article  Google Scholar 

  15. Desai MM, Grover R, Aron M, Ganpule A, Joshi SS, Desai MR et al (2011) Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol 186(2):563–568

    Article  Google Scholar 

  16. Dasgupta P, Challacombe B, Murphy D, Khan MS (2006) Coming full circle in robotic urology. BJU Int 98(1):4–5

    Article  Google Scholar 

  17. Gilling P, Barber N, Bidair M, Anderson P, Sutton M, Aho T et al (2018) WATER: a double-blind, randomized, controlled trial of aquablation((R)) vs transurethral resection of the prostate in benign prostatic hyperplasia. J Urol 199(5):1252–1261

    Article  Google Scholar 

  18. Gilling PJ, Barber N, Bidair M, Anderson P, Sutton M, Aho T et al (2019) Randomized controlled trial of aquablation versus transurethral resection of the prostate in benign prostatic hyperplasia: one-year outcomes. Urology 125:169–173

    Article  Google Scholar 

  19. Gilling P, Barber N, Bidair M, Anderson P, Sutton M, Aho T et al (2020) Three-year outcomes after Aquablation therapy compared to TURP: results from a blinded randomized trial. Can J Urol 27(1):10073

    Google Scholar 

  20. Desai M, Bidair M, Bhojani N, Trainer A, Arther A, Kramolowsky E et al (2020) Aquablation for benign prostatic hyperplasia in large prostates (80–150 cc): 2‑year results. Can J Urol 27(2):10147–10153

    PubMed  Google Scholar 

  21. Bach T, Gilling P, El Hajj A, Anderson P, Barber N (2020) First multi-center all-comers study for the Aquablation procedure. J Clin Med 9(2):603

    Article  Google Scholar 

  22. Kabakci AS, Patel A, Erkmen AM, Erkmen I, Gümüşkanat Ö, Çetinkaya M (2018) Lithotripsy of renal stones with Avicenna Roboflex robotic-assisted retrograde intra-renal surgery (RA-RIRS). In: Habib M (Hrsg) Handbook of research on biomimetics and biomedical robotics. IGI Global, Hershey, S 142–160

    Chapter  Google Scholar 

  23. Klein J‑T, Fiedler M, Kabakci AS, Saglam R, Rassweiler J (2016) PD18-08 multicenter phase II study of the clinical USE of the Avicenna Roboflex URS robot in robotic retrograde intrarenal stone surgery. J Urol 195(4S):e406–e407

    Google Scholar 

  24. Rassweiler JJ, Fiedler M, Charalampogiannis N, Kabakci AS, Sağlam R, Klein JT (2020) Robotics and Ureteroscopy. In: Schwartz BF, Denstedt JD (Hrsg) Ureteroscopy. Springer, Cham, S 239–257

    Chapter  Google Scholar 

  25. Schlager D, Miernik A, Lamrini S, Vogel M, Teichmann H‑O, Brandenburg A et al (2019) A novel laser lithotripsy system with automatic real-time urinary stone recognition: computer controlled ex vivo lithotripsy is feasible and reproducible in endoscopic stone fragmentation. J Urol 202(6):1263–1269

    Article  Google Scholar 

  26. Rassweiler J, Goezen AS, Fiedler M, Rassweiler-Seyfried M‑C, Klein J‑T (2020) Roboterassistierte Endourologie. Uro-News 24:34–41

    Article  Google Scholar 

  27. Hoenig D, Shalhav A, Arcangeli C, Ostrandef D, Elbahnasy A, Clayman R (1997) Under-table mounting for AESOP robot for laparoscopic flank surgery. Minim Invasive Ther Allied Technol 6(5–6):460–462

    Article  Google Scholar 

  28. Su L‑M, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA et al (2002) Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol 16(7):471–475

    Article  Google Scholar 

  29. Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N et al (2003) AcuBot: a robot for radiological interventions. IEEE Trans Rob Autom 19(5):927–930

    Article  Google Scholar 

  30. Rassweiler J, Rassweiler M‑C, Müller M, Kenngott H, Meinzer H‑P, Teber D (2014) Surgical navigation in urology: European perspective. Curr Opin Urol 24(1):81–97

    Article  Google Scholar 

  31. Ahmed HU, Bosaily AE‑S, Brown LC, Gabe R, Kaplan R, Parmar MK et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822

    Article  Google Scholar 

  32. Franz T, Von Hardenberg J, Blana A, Cash H, Baumunk D, Salomon G et al (2017) MRI/TRUS fusion-guided prostate biopsy: value in the context of focal therapy. Urologe A 56(2):208–216

    Article  CAS  Google Scholar 

  33. Baumhauer M, Simpfendörfer T, Schwarz R et al (2007) Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization. Proc SPIE 6509(1):11–23

    Google Scholar 

  34. Teber D, Guven S et al (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56(2):332–338

    Article  Google Scholar 

  35. Simpfendörfer T, Baumhauer M et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845

    Article  Google Scholar 

  36. Tewari A, Sooriakumaran P et al (2012) Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol 62(1):1–15

    Article  Google Scholar 

  37. Tewari AK, Bigelow K et al (2007) Anatomic restoration technique of continence mechanism and preservation of puboprostatic collar: a novel modification to achieve early urinary continence in men undergoing robotic prostatectomy. Urology 69(4):726–731

    Article  Google Scholar 

  38. Tewari AK, Shevchuk MM et al (2011) Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery. BJU Int 108(9):1421–1429

    Article  Google Scholar 

  39. Teber D, Simpfendörfer T et al (2010) In-vitro evaluation of a soft-tissue navigation system for laparoscopic prostatectomy. J Endourol 24(9):1487–1491

    Article  Google Scholar 

  40. van der Poel HG, Buckle T et al (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60(4):826–833

    Article  Google Scholar 

  41. Maurer T, Gschwend JE, Eiber M (2018) Prostate-specific membrane antigen-guided salvage lymph node dissection in recurrent prostate cancer: a novel technology to detect lymph node metastases. Curr Opin Urol 28(2):191–196. https://doi.org/10.1097/MOU.0000000000000458

    Article  PubMed  Google Scholar 

  42. van Leeuwen FWB, van Oosterom MN, Meershoek P, van Leeuwen PJ, Berliner C, van der Poel HG, Graefen M, Maurer T (2019) Minimal-invasive robot-assisted image-guided resection of prostate-specific membrane antigen-positive lymph nodes in recurrent prostate cancer. Clin Nucl Med 44(7):580–581. https://doi.org/10.1097/RLU.0000000000002600

    Article  PubMed  Google Scholar 

  43. Baranski AC, Schäfer M, Bauder-Wüst U, Roscher M, Schmidt J, Stenau E, Simpfendörfer T, Teber D, Maier-Hein L, Hadaschik B, Haberkorn U, Eder M, Kopka K (2018) PSMA-11-derived dual-labeled PSMA inhibitors for preoperative PET imaging and precise fluorescence-guided surgery of prostate cancer. J Nucl Med 59(4):639–645. https://doi.org/10.2967/jnumed.117.201293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Teber.

Ethics declarations

Interessenkonflikt

D. S. Schoeb: Förderung durch das Bundesministerium für Bildung und Forschung (BMBF), kein Bezug zum aktuellen Thema. A. Miernik: Förderung durch das Bundesministerium für Bildung und Forschung (BMBF). Reisekostenübernahmen: Deutsche Gesellschaft für Urologie (DGU), DE, European Association of Urology (EAU), NL; Beratertätigkeit: KLS Martin GmbH, DE, Dornier MedTech Europe GmbH, RichardWolf GmbH, DE, KarlStorz SE & Co. KG, DE, Lisa laser OHG, DE, Boston Scientific, USA, Dornier MedTech Europe GmbH, DE, Medi-Tate Ltd., IL; reviewer: Ludwig Boltzmann Gesellschaft, A; Lizenzgebühren: Walter de Gruyter, DE, Springer Science+Business Media, DE. D. Teber: Beratertätigkeit für Janssen Pharmaceutica, Boston Scientific, Richard Wolff GmbH, Intuitve Surgical, kein Bezug zum aktuellen Thema. J. Rassweiler, A. Sigle, C. Engels und A.S. Goezen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoeb, D.S., Rassweiler, J., Sigle, A. et al. Robotik und intraoperative Navigation. Urologe 60, 27–38 (2021). https://doi.org/10.1007/s00120-020-01405-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-020-01405-4

Schlüsselwörter

Keywords

Navigation