Skip to main content
Log in

Molekulare zielgerichtete Therapie und Immuntherapie des Prostatakarzinoms

Targeted molecular therapy and immunotherapy for prostate cancer

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Über Jahrzehnte basierte die Behandlung des fortgeschrittenen Prostatakarzinoms vorwiegend auf der Manipulation des Androgenrezeptor-gesteuerten Proliferationswegs. Chemotherapien spielten erst mit dem Aufkommen der Taxane eine zusätzliche wichtige Rolle. Der Fortschritt in der translationalen Forschung der letzten Jahre brachte Bewegung und einschlägige Innovationen in das therapeutische Umfeld. Zielgerichtete Therapien rückten mit der Entschlüsselung der HRD-Maschinerie („homologous repair deficiency“) und deren medikamentöser Beeinflussbarkeit durch PARP-Inhibitoren (Poly-Adenyl-Ribose-Polymerase) in den Therapiefokus für ausgewählte Patienten. Die erste positive Phase-III-Studie für PARP-Inhibitoren liegt bereits vor. Darüber hinaus macht auch die in der Onkologie mittlerweile weitverbreitete Immuntherapie beim Prostatakarzinom Fortschritte, sowohl Checkpoint-Inhibitoren als auch bispezifische Antikörper konnten klinisch sinnvolle Aktivitäten zeigen. Noch früh in der Entwicklung befinden sich zelluläre Therapien wie CAR(„chimeric antigen receptor“)-T-Zellen, die gegen PSMA (prostataspezifisches Membranantigen) gerichtet sind. In diesem Review möchten die Autoren eine zusammenfassende Übersicht über Grundlagen und klinische Entwicklung dieser neuen Therapien geben.

Abstract

For decades, the treatment of advanced prostate cancer was mainly based on the manipulation of the androgen receptor-controlled proliferation pathway. Chemotherapy only played an additional important role with the advent of taxanes. The progress in translational research in recent years has led to innovations in the therapeutic environment. With the decoding of the homologous repair deficiency (HRD) machinery and its ability to be influenced by PARP inhibitors, targeted therapies moved into the therapeutic focus for selected patients. The first positive phase III study for PARP inhibitors is already available. In addition, immunotherapy for the treatment of prostate cancer, which is now widely used in oncology, is also making progress; both checkpoint inhibitors and bispecific antibodies have shown clinically useful activities. Cellular therapies such as CAR T cells, which are directed against prostate-specific membrane antigen (PSMA), are still at an early stage of development. In this review, the authors provide a summary of the basic principles and clinical development of these new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Corcoran NM et al (2016) Molecular pathways: targeting DNA repair pathway defects enriched in metastasis. Clin Cancer Res 22(13):3132–3137

    CAS  PubMed  Google Scholar 

  2. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98

    CAS  PubMed  Google Scholar 

  3. Sahin IH et al (2019) Immune checkpoint inhibitors for the treatment of MSI-H/MMR‑D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 121(10):809–818

    PubMed  Google Scholar 

  4. McLennan D et al (2020) Re: PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. Eur Urol 77(1):130–131

    PubMed  Google Scholar 

  5. Nientiedt C et al (2017) Mutations in BRCA2 and taxane resistance in prostate cancer. Sci Rep 7(1):4574

    PubMed  PubMed Central  Google Scholar 

  6. Hussain M et al (2019) PROfound: Phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations. Ann Oncol 30:881

    Google Scholar 

  7. Pritchard CC et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375(5):443–453

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaheen M et al (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117(23):6074–6082

    CAS  PubMed  Google Scholar 

  9. Adashek JJ, Jain RK, Zhang J (2019) Clinical development of PARP inhibitors in treating metastatic castration-resistant prostate cancer. Cells 8(8):860

    CAS  PubMed Central  Google Scholar 

  10. Mateo J et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mateo J et al (2020) Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21(1):162–174

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hussain MHA et al (2020) Next-generation sequencing (NGS) of tumor tissue from 〉4000 men with metastatic castration-resistant prostate cancer (mCRPC): The PROfound phase III study experience. J Clin Oncol 38(6_suppl):195–195

    Google Scholar 

  13. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    CAS  PubMed  Google Scholar 

  14. Hegde PS, Chen DS (2020) Top 10 challenges in cancer immunotherapy. Immunity 52(1):17–35

    CAS  PubMed  Google Scholar 

  15. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218

    CAS  PubMed  Google Scholar 

  16. Kantoff PW et al (2010) Sipuleucel‑T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    CAS  PubMed  Google Scholar 

  17. Fong L et al (2014) Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel‑T for localized prostate cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju268

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kwon ED et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao J et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23(5):551–555

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuen KCY et al (2019) The tumor immune microenvironment differs between metastatic castrate resistant prostate cancer (CRPC) and hormone sensitive prostate cancer (HSPC). J Clin Oncol 37(7_suppl):251

    Google Scholar 

  21. Bishop JL et al (2015) PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 6(1):234–242

    PubMed  Google Scholar 

  22. Antonarakis ES et al (2020) Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J Clin Oncol 38(5):395–405

    PubMed  Google Scholar 

  23. Nava Rodrigues D et al (2018) Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J Clin Invest 128(10):4441–4453

    PubMed  PubMed Central  Google Scholar 

  24. Abida W et al (2019) Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 5(4):471–478

    PubMed  Google Scholar 

  25. Wu YM et al (2018) Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173(7):1770–1782.e14

    CAS  PubMed  Google Scholar 

  26. Reimers MA et al (2020) Clinical outcomes in cyclin-dependent Kinase 12 mutant advanced prostate cancer. Eur Urol 77(3):333–341

    CAS  PubMed  Google Scholar 

  27. Yu EY et al (2019) Keynote-365 cohort a: Pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 37(7_suppl):145

    Google Scholar 

  28. Massard C et al (2019) Keynote-365 cohort b: Pembrolizumab (pembro) plus docetaxel and prednisone in abiraterone (abi) or enzalutamide (enza)-pretreated patients (pts) with metastatic castrate resistant prostate cancer (mCRPC). J Clin Oncol 37(7):v351

    Google Scholar 

  29. Sharma P et al (2019) Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650). J Clin Oncol 37(7_suppl):142

    Google Scholar 

  30. Weide B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32(5):498–507

    CAS  PubMed  Google Scholar 

  31. DuPage M et al (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405–409

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubler H et al (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26

    PubMed  PubMed Central  Google Scholar 

  33. Madan RA et al (2009) Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 18(7):1001–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kantoff PW et al (2010) Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gulley JL et al (2019) Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 37(13):1051–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagorsen D et al (2009) Immunotherapy of lymphoma and leukemia with T‑cell engaging BiTE antibody blinatumomab. Leuk Lymphoma 50(6):886–891

    CAS  PubMed  Google Scholar 

  37. Hummel HD et al (2019) Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 37(15_suppl):5034

    Google Scholar 

  38. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kochenderfer JN et al (2015) Chemotherapy-refractory diffuse large B‑cell lymphoma and indolent B‑cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549

    CAS  PubMed  Google Scholar 

  40. Junghans RP et al (2016) Phase I trial of anti-PSMA designer CAR‑T cells in prostate cancer: possible role for interacting Interleukin 2‑T cell pharmacodynamics as a determinant of clinical response. Prostate 76(14):1257–1270

    CAS  PubMed  Google Scholar 

  41. Narayan V et al (2019) A phase I clinical trial of PSMA-directed/TGF13-insensitive CAR‑T cells in metastatic castration-resistant prostate cancer. J Clin Oncol 37(7_suppl):TPS347

    Google Scholar 

  42. Chen DS, Mellman I (2013) Oncology meets immunology: the cancerimmunity cycle. Immunity 39(1):1–10

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Grüllich.

Ethics declarations

Interessenkonflikt

C. Grüllich: Beratertätigkeit für BMS, MSD, Pfizer, Ipsen, Eisai, Astra Zeneca. E. Nößner: Beratertätigkeit für Roche, Definiens GmbH, IPSEN, Astrazeneca; Vortragstätigkeit für: Roche, Hexal, Novartis; Forschungsunterstützung: Phio Pharmaceuticals Corp, Medigene GmbH. V. Grünwald : Beratertätigkeit für Pfizer, Novartis, Bristol Myer Squibb, Ipsen, Eisai, EUSAPharm, MSD, Merck Serono, Lilly und Roche. Aktienbesitz Astra Zeneca, BMS, MSD. Forschungsförderung: Bristol Myer Squibb, MSD, AstraZeneca, Pfizer und Novartis. Vortragstätigkeit für: AstraZeneca, Pfizer, Novartis, Bristol Myer Squibb, MSD, Ipsen, Eisai, Lilly und Roche. D. Pfister : Beratertätigkeit für Sanofi, Janssen, MSD, Bayer, Vortragstätigkeit für: Sanofi, Janssen, Bayer, Ipsen, Roche.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grüllich, C., Nößner, E., Pfister, D. et al. Molekulare zielgerichtete Therapie und Immuntherapie des Prostatakarzinoms. Urologe 59, 687–694 (2020). https://doi.org/10.1007/s00120-020-01198-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-020-01198-6

Schlüsselwörter

Keywords

Navigation