Advertisement

Der Urologe

, Volume 58, Issue 12, pp 1443–1450 | Cite as

Bedeutung der VI-RADS-Klassifikation für die Bildgebung beim Harnblasenkarzinom – Stand der Dinge

  • V. HechlerEmail author
  • M. Rink
  • D. Beyersdorff
  • M. Beer
  • A. J. Beer
  • V. Panebianco
  • M. Pecoraro
  • C. Bolenz
  • G. SalomonEmail author
Leitthema
  • 39 Downloads

Zusammenfassung

Die initiale Diagnostik des Harnblasenkarzinoms basiert auf der Zystoskopie und der transurethralen Resektion (TUR) suspekter Läsionen in der Harnblase. Für die Ausbreitungsdiagnostik bei geplanter lokal kurativer Therapie ist ein akkurates Staging für die weitere Therapieplanung erforderlich. Diese Übersichtsarbeit fasst den aktuellen Status der Bildgebung mit Magnetresonanztomographie (MRT) und der sog. VI-RADS-Klassifikation („vesical imaging-reporting and data system“) zusammen und soll deren Potential aufzeigen. Die multiparametrische MRT (mpMRT) kann die Genauigkeit der lokalen Tumorausbreitung im Vergleich zur alleinigen konventionellen Bildgebung verbessern. VI-RADS standardisiert die Befundung des MRT-Stagings und klassifiziert die Wahrscheinlichkeit einer Muskelinvasion von Harnblasenkarzinomen in 5 Kategorien. Erste Daten sprechen für eine geringe Untersucherabhängigkeit. Die Durchführung prospektiver multizentrischer Studien ist jedoch notwendig für eine Validierung der VI-RADS-Klassifikation. Fortschritte in der funktionellen und molekularen bildgebenden Diagnostik sowie der Hybridbildgebung könnten die Genauigkeit für das klinische T‑ und N‑Staging beim Harnblasenkarzinom in Zukunft weiter verbessern.

Schlüsselwörter

Urothelkarzinom Magnetresonanztomographie, multiparametrische Staging Neoadjuvante Therapie Multimodale Therapie 

The role of the vesical imaging-reporting and data system (VI-RADS) for bladder cancer diagnostics—status quo

Abstract

Initial clinical and pathological diagnostic workup of urinary bladder cancer is based on cystoscopy, transurethral resection of suspicious lesions, and computed tomography when indicated. Accurate staging is necessary for further therapeutic decision-making. This review summarizes the current status of multiparametric magnetic resonance imaging (mpMRI) and the vesical imaging-reporting and data system (VI-RADS) classification. MpMRI may improve the accuracy of assessment of local tumor invasion compared to conventional imaging alone. VI-RADS standardizes reporting of MRI staging and classifies the likelihood of muscle-invasive bladder cancer into five categories. Preliminary data suggest low interobserver variability. However, prospective multicenter studies are necessary to validate the VI-RADS classification. Progress in functional, molecular, and hybrid imaging may further improve the accuracy of clinical tumor and nodal staging for bladder cancer.

Keywords

Urothelial carcinoma Magnetic resonance imaging, multiparametric Staging Neoadjuvant therapy Multimodal therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. Hechler, M. Rink, D. Beyersdorff, M. Beer, A.J. Beer, V. Panebianco, M. Pecoraro, C. Bolenz und G. Salomon geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    S3 Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms. Einsehbar unter: http://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Blasenkarzinom/LL_Harnblasenkarzinom_Langversion_1.1.pdf. 2016
  2. 2.
    Van Der Molen AJ et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18(1):4–17PubMedCrossRefGoogle Scholar
  3. 3.
    Blick CG et al (2012) Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int 110(1):84–94PubMedCrossRefGoogle Scholar
  4. 4.
    Narumi Y et al (1993) Bladder tumors: staging with gadolinium-enhanced oblique MR imaging. Radiology 187(1):145–150PubMedCrossRefGoogle Scholar
  5. 5.
    Dighe MK, Bhargava P, Wright J (2011) Urinary bladder masses: techniques, imaging spectrum, and staging. J Comput Assist Tomogr 35(4):411–424PubMedCrossRefGoogle Scholar
  6. 6.
    Heidenreich A et al (2010) Imaging studies in metastatic urogenital cancer patients undergoing systemic therapy: recommendations of a multidisciplinary consensus meeting of the Association of Urological Oncology of the German Cancer Society. Urol Int 85(1):1–10PubMedCrossRefGoogle Scholar
  7. 7.
    Sylvester RJ et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49(3):466–465 (discussion 475–7)PubMedCrossRefGoogle Scholar
  8. 8.
    Vianello A et al (2011) Repeated white light transurethral resection of the bladder in nonmuscle-invasive urothelial bladder cancers: systematic review and meta-analysis. J Endourol 25(11):1703–1712PubMedCrossRefGoogle Scholar
  9. 9.
    Gordon PC et al (2017) Long-term outcomes from re-resection for high-risk non-muscle-invasive bladder cancer: a potential to rationalize use. Eur Urol Focus 5(4):650–657PubMedCrossRefGoogle Scholar
  10. 10.
    Rink M et al (2013) Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol 64(4):624–638PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ark JT et al (2014) Incidence and predictors of understaging in patients with clinical T1 urothelial carcinoma undergoing radical cystectomy. BJU Int 113(6):894–899PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brausi M et al (2002) Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol 41(5):523–531PubMedCrossRefGoogle Scholar
  13. 13.
    Lawrentschuk N, Lee ST, Scott AM (2013) Current role of PET, CT, MR for invasive bladder cancer. Curr Urol Rep 14(2):84–89PubMedCrossRefGoogle Scholar
  14. 14.
    Woo S et al (2017) Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: a systematic review and meta-analysis. Eur J Radiol 95:46–55PubMedCrossRefGoogle Scholar
  15. 15.
    Huang L et al (2018) The diagnostic value of MR imaging in differentiating T staging of bladder cancer: a meta-analysis. Radiology 286(2):502–511PubMedCrossRefGoogle Scholar
  16. 16.
    Daneshmand S et al (2012) Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology 80(6):1313–1318PubMedCrossRefGoogle Scholar
  17. 17.
    Crozier J et al (2019) Comparative sensitivity and specificity of imaging modalities in staging bladder cancer prior to radical cystectomy: a systematic review and meta-analysis. World J Urol 37(4):667–690PubMedCrossRefGoogle Scholar
  18. 18.
    Goodfellow H et al (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114(3):389–395PubMedGoogle Scholar
  19. 19.
    Burnside ES et al (2009) The ACR BI-RADS experience: learning from history. J Am Coll Radiol 6(12):851–860PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Margolis DJA, Hu JC (2019) Vying for standardization of bladder cancer MRI interpretation and reporting: VI-RADS. Radiology 291(3):675–676PubMedCrossRefGoogle Scholar
  21. 21.
    Rothke M et al (2013) PI-RADS classification: structured reporting for MRI of the prostate. Rofo 185(3):253–261PubMedCrossRefGoogle Scholar
  22. 22.
    Panebianco V et al (2018) Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical imaging-reporting and data system). Eur Urol 74(3):294–306PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim B et al (1994) Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 193(1):239–245PubMedCrossRefGoogle Scholar
  24. 24.
    Panebianco V et al (2016) Improving staging in bladder cancer: the increasing role of multiparametric magnetic resonance imaging. Eur Urol Focus 2(2):113–121PubMedCrossRefGoogle Scholar
  25. 25.
    Naish JH et al (2011) Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer. Magn Reson Med 66(1):219–226PubMedCrossRefGoogle Scholar
  26. 26.
    Seisen T et al (2017) Comparative effectiveness of trimodal therapy versus radical cystectomy for localized muscle-invasive urothelial carcinoma of the bladder. Eur Urol 72(4):483–487PubMedCrossRefGoogle Scholar
  27. 27.
    Nguyen HT et al (2017) Quantitative assessment of heterogeneity in bladder tumor MRI diffusivity: can response be predicted prior to neoadjuvant chemotherapy? BLC 3(4):237–244CrossRefGoogle Scholar
  28. 28.
    Yoshida S et al (2012) Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys 83(1):e21–e27PubMedCrossRefGoogle Scholar
  29. 29.
    Schrier BP et al (2006) Evaluation of chemotherapy with magnetic resonance imaging in patients with regionally metastatic or unresectable bladder cancer. Eur Urol 49(4):698–703PubMedCrossRefGoogle Scholar
  30. 30.
    Donaldson SB et al (2013) Dynamic contrast-enhanced MRI in patients with muscle-invasive transitional cell carcinoma of the bladder can distinguish between residual tumour and post-chemotherapy effect. Eur J Radiol 82(12):2161–2168PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen HT et al (2015) Prediction of chemotherapeutic response in bladder cancer using K‑means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging 41(5):1374–1382PubMedCrossRefGoogle Scholar
  32. 32.
    Barchetti G et al (2019) Multiparametric MRI of the bladder: inter-observer agreement and accuracy with the Vesical Imaging-Reporting and Data System (VI-RADS) at a single reference center. Eur Radiol 29(10):5498–5506PubMedCrossRefGoogle Scholar
  33. 33.
    Wang H et al (2019) Multiparametric MRI for bladder cancer: validation of VI-RADS for the detection of detrusor muscle invasion. Radiology 291(3):668–674CrossRefPubMedGoogle Scholar
  34. 34.
    Ueno Y et al (2019) Diagnostic accuracy and Interobserver agreement for the vesical imaging-reporting and data system for muscle-invasive bladder cancer: a multireader validation study. Eur Urol 76(1):54–56PubMedCrossRefGoogle Scholar
  35. 35.
    Panebianco V et al (2017) An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer. Eur Radiol 27(9):3759–3766PubMedCrossRefGoogle Scholar
  36. 36.
    Wang HJ et al (2014) Diffusion-weighted MRI in bladder carcinoma: the differentiation between tumor recurrence and benign changes after resection. Abdom Imaging 39(1):135–141PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenkrantz AB et al (2016) Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 206(1):162–172PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenkrantz AB et al (2017) Prospective pilot study to evaluate the incremental value of PET information in patients with bladder cancer undergoing 18F-FDG simultaneous PET/MRI. Clin Nucl Med 42(1):e8–e15PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Altun E (2019) MR imaging of the urinary bladder: added value of PET-MR imaging. Magn Reson Imaging Clin N Am 27(1):105–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • V. Hechler
    • 1
    Email author
  • M. Rink
    • 2
  • D. Beyersdorff
    • 3
  • M. Beer
    • 4
  • A. J. Beer
    • 5
  • V. Panebianco
    • 6
  • M. Pecoraro
    • 6
  • C. Bolenz
    • 1
  • G. Salomon
    • 2
    Email author
  1. 1.Klinik für Urologie und KinderurologieUniversitätsklinikum UlmUlmDeutschland
  2. 2.Klinik und Poliklinik für UrologieUniversitätsklinikum Hamburg EppendorfHamburgDeutschland
  3. 3.Diagnostische und Interventionelle RadiologieUniversitätsklinikum Hamburg EppendorfHamburgDeutschland
  4. 4.Klinik für Diagnostische und Interventionelle RadiologieUniversitätsklinikum UlmUlmDeutschland
  5. 5.Klinik für NuklearmedizinUniversitätsklinikum UlmUlmDeutschland
  6. 6.Department RadiologieSapienza Universität RomRomItalien

Personalised recommendations