Advertisement

Der Urologe

, Volume 57, Issue 5, pp 583–590 | Cite as

Systemische Immuncheckpoint-Inhibition

Eine vielversprechende Therapie urologischer Tumoren?
  • F. C. Roos
  • C. Becker
  • M. B. Stope
  • I. Tsaur
  • Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie
Molekulare Urologie praxisnah

Zusammenfassung

Das bessere Verständnis der immunmodulierenden Interaktionen zwischen Tumorzelle und Immunzellen führten zu neuen vielversprechenden systemischen Therapieansätzen in der Erst- und Zweitlinientherapie urologischer Tumoren. Besonders beim Urothelkarzinom steht seit 20 Jahren erstmals mit den Checkpointinhibitoren (PD-1- und PDL-1-Inhibitoren) eine gut verträgliche Therapie zur Verfügung, die Ansprechraten >20 % erzielt, die dauerhaft anhalten können. Diese Übersichtsarbeit erklärt den Ansatz der Immuntherapie und fasst die aktuelle Phase-III-Studienlage zum Urothelkarzinom und Nierenzellkarzinom zusammen. Die aktuellen immunmodulatorischen Therapieansätze werden beim Prostatakarzinom diskutiert. Abschließend beleuchten wir neue immunmodulatorische Therapieformen in der Grundlagenforschung.

Schlüsselwörter

Nierenzellkarzinom Urothelkarzinom Prostatakarzinom Immuntherapie Checkpointinhibitoren 

Systemic immune checkpoint inhibition

A promising treatment for urological tumors?

Abstract

Improved understanding of the immunomodulatory interactions between tumor cells and immune cells has led to new and promising systemic therapeutic approaches in the first- and second-line therapy of urological tumors. Particularly in the case of urothelial carcinoma, for the first time in 20 years, checkpoint inhibitors (PD-1 and PDL-1 inhibitors) provide well-tolerated therapy that achieves response rates of >20% that can be sustained over the long term. This review explains the approach of immunotherapy and summarizes the current phase III clinical situation on urothelial carcinoma and renal cell carcinoma. The current immunomodulatory therapeutic approaches for prostate cancer are discussed. Finally, we highlight new immunomodulatory therapeutic approaches in basic research.

Keywords

Renal cell carcinoma Urothelial carcinoma Prostate cancer Immunotherapy Checkpoint inhibitors 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. C. Roos, C. Becker, M. B. Stope und I. Tsaur geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Gajewski TF, Meng Y, Blank C et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145CrossRefPubMedGoogle Scholar
  2. 2.
    Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240CrossRefPubMedGoogle Scholar
  3. 3.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274CrossRefPubMedGoogle Scholar
  4. 4.
    Jr Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefPubMedGoogle Scholar
  5. 5.
    Abbas AK, Jr Janeway CA (2000) Immunology: improving on nature in the twenty-first century. Cell 100:129–138CrossRefPubMedGoogle Scholar
  6. 6.
    Blank C, Brown I, Marks R et al (2003) Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. J Immunol 171:4574–4581CrossRefPubMedGoogle Scholar
  7. 7.
    Keir ME, Latchman YE, Freeman GJ et al (2005) Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol 175:7372–7379CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMedGoogle Scholar
  9. 9.
    Jin H‑T, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T‑cell immunity. Curr Top Microbiol Immunol 350:17–37PubMedGoogle Scholar
  10. 10.
    Wang Q, Liu F, Liu L (2017) Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine (Baltimore) 96:e6369CrossRefGoogle Scholar
  11. 11.
    Carosella ED, Ploussard G, LeMaoult J et al (2015) A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur Urol 68:267–279CrossRefPubMedGoogle Scholar
  12. 12.
    Malmstrom P‑U, Sylvester RJ, Crawford DE et al (2009) An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur Urol 56:247–256CrossRefPubMedGoogle Scholar
  13. 13.
    Motzer RJ, Rini BI, Bukowski RM et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524CrossRefPubMedGoogle Scholar
  14. 14.
    Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMedGoogle Scholar
  15. 15.
    Rijnders M, de Wit R, Boormans JL et al (2017) Systematic review of immune checkpoint inhibition in urological cancers. Eur Urol 72:411–423CrossRefPubMedGoogle Scholar
  16. 16.
    Raggi D, Miceli R, Sonpavde G et al (2016) Second-line single-agent versus doublet chemotherapy as salvage therapy for metastatic urothelial cancer: a systematic review and meta-analysis. Ann Oncol 27:49–61CrossRefPubMedGoogle Scholar
  17. 17.
    Escudier B, Porta C, Schmidinger M et al (2016) Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v58–v68CrossRefPubMedGoogle Scholar
  18. 18.
    Ko JJ, Xie W, Kroeger N et al (2015) The international metastatic renal cell carcinoma database consortium model as a prognostic tool in patients with metastatic renal cell carcinoma previously treated with first-line targeted therapy: a population-based study. Lancet Oncol 16:293–300CrossRefPubMedGoogle Scholar
  19. 19.
    Ryan CJ, Smith MR, Fizazi K et al (2015) Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16:152–160CrossRefPubMedGoogle Scholar
  20. 20.
    Scher HI, Fizazi K, Saad F et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197CrossRefPubMedGoogle Scholar
  21. 21.
    Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567CrossRefPubMedGoogle Scholar
  22. 22.
    Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T‑cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson RH, Gillett MD, Cheville JC et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci Usa 101:17174–17179CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Blank C, Brown I, Peterson AC et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145CrossRefPubMedGoogle Scholar
  25. 25.
    Hirano F, Kaneko K, Tamura H et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096PubMedGoogle Scholar
  26. 26.
    Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci Usa 99:12293–12297CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Powles T, Duran I, van der Heijden MS et al (2017) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet.  https://doi.org/10.1016/S0140-6736(17)33297-X Google Scholar
  30. 30.
    Bellmunt J, de Wit R, Vaughn DJ et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376:1015–1026CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Balar AV, Castellano D, O’Donnell PH et al (2017) First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 18:1483–1492CrossRefPubMedGoogle Scholar
  32. 32.
    Sharma P, Retz M, Siefker-Radtke A et al (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 18:312–322CrossRefPubMedGoogle Scholar
  33. 33.
    Graff JN, Alumkal JJ, Drake CG et al (2016) Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 7:52810–52817PubMedPubMedCentralGoogle Scholar
  34. 34.
    Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kwon ED, Drake CG, Scher HI et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15:700–712CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beer TM, Kwon ED, Drake CG et al (2017) Randomized, double-blind, phase III trial of Ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47CrossRefPubMedGoogle Scholar
  37. 37.
    Bishop JL, Sio A, Angeles A, Roberts ME et al (2015) PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 6:234–242CrossRefPubMedGoogle Scholar
  38. 38.
    Graff JN, Alumkal JJ, Drake CG et al (2016) First evidence of significant clinical activity of PD-1 inhibitors in metastatic, castration resistant prostate cancer (mCRPC). Ann Oncol 27:vi243–vi265CrossRefGoogle Scholar
  39. 39.
    Balar AV, Galsky MD, Rosenberg JE et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389:67–76CrossRefPubMedGoogle Scholar
  40. 40.
    Redman JM, Gulley JL, Madan RA (2017) Combining immunotherapies for the treatment of prostate cancer. Urol Oncol 35:694–700CrossRefPubMedGoogle Scholar
  41. 41.
    Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med 236:567–579CrossRefGoogle Scholar
  42. 42.
    Fong L, Carroll P, Weinberg V et al (2014) Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/dju268 PubMedPubMedCentralGoogle Scholar
  43. 43.
    DiPaola RS, Plante M, Kaufman H et al (2006) A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med 4:1CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Arlen PM, Skarupa L, Pazdur M et al (2007) Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol 178:1515–1520CrossRefPubMedGoogle Scholar
  45. 45.
    Kantoff PW, Schuetz TJ, Blumenstein BA et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Aggen DH, Drake CG (2017) Biomarkers for immunotherapy in bladder cancer: a moving target. J Immunother Cancer 5:94CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Atkins MB, Clark JI, Quinn DI (2017) Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol 28:1484–1494CrossRefPubMedGoogle Scholar
  48. 48.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ngiow SF, Scheidt B, Akiba H et al (2011) Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551CrossRefPubMedGoogle Scholar
  50. 50.
    Jing W, Gershan JA, Weber J et al (2015) Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer 3:2CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Powles T, Albiges L, Staehler M et al (2018) Updated European Association of Urology guidelines recommendations for the treatment of first-line metastatic clear cell renal cancer. Eur Urol.  https://doi.org/10.1016/j.eururo.2017.11.016 PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • F. C. Roos
    • 1
  • C. Becker
    • 2
  • M. B. Stope
    • 3
  • I. Tsaur
    • 4
  • Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie
  1. 1.Klinik für Urologie des UniversitätsklinikumsJohann Wolfgang Goethe Universität FrankfurtFrankfurtDeutschland
  2. 2.ForschungskoordinationDeutsche Gesellschaft für Urologie (DGU) e. V.DüsseldorfDeutschland
  3. 3.Klinik und Poliklinik für UrologieUniversitätsmedizin GreifswaldGreifswaldDeutschland
  4. 4.Klinik für Urologie und KinderurologieUniversitätsmedizin MainzMainzDeutschland

Personalised recommendations