Der Urologe

, Volume 57, Issue 3, pp 295–299 | Cite as

„Watchful waiting“ und aktive Überwachung kleiner Nierentumoren

  • R. Mager
  • S. Frees
  • A. Haferkamp


Die Inzidenz kleiner Nierenzellkarzinome ≤4 cm steigt mit der ausgedehnten Nutzung von Schnittbildgebung. Die Tumoren weisen meist wenig Aggressivität auf, wobei das Risiko der Metastasierung trotzdem bis zu 6 % betragen kann. Insbesondere für alte komorbide Patienten könnte eine Operation somit eine schädigende Übertherapie darstellen. Die Etablierung einer onkologisch sicheren aktiven Überwachung gewinnt in dieser Situation zunehmend an Bedeutung, so dass klinische, radiologische und biopsiebasierte biologische Marker für die Auswahl und die Überwachung geeigneter Patienten aktuell im Fokus der Forschung stehen.


Biopsie Nierenzellkarzinom Biomarker Metastasen Mutationen 

Watchful waiting and active surveillance of small renal masses


The incidence of small renal masses ≤4 cm is increasing due to the widespread use of cross-sectional imaging. The majority of these represent indolent forms, but the risk for developing metastases is reported in up to 6% of patients. Particularly in old and comorbid patients surgery might be harmful overtreatment. Thus, there is an increasing demand to establish oncologically safe active surveillance protocols. Radiographic or biopsy-based biological markers to appropriately designate candidates for active surveillance are currently the focus of research.


Biopsy Renal cell carcinoma Biomarkers Neoplasm metastasis Mutations 


Einhaltung ethischer Richtlinien


R. Mager, S. Frees und A. Haferkamp geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.


  1. 1.
    Audenet F, Audouin M, Drouin SJ et al (2014) Charlson score as a single pertinent criterion to select candidates for active surveillance among patients with small renal masses. World J Urol 32:513–518CrossRefPubMedGoogle Scholar
  2. 2.
    AWMF, DKG, Deutsche Krebshilfe (2017) S3-Leitlinie Nierenzellkarzinom. Leitlinienprogramm Onkologie AWMF-Registernummer: 043/017-OLGoogle Scholar
  3. 3.
    Beroukhim R, Brunet JP, Di Napoli A et al (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69:4674–4681CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Buse S, Hach CE, Klumpen P et al (2015) Cost-effectiveness of robot-assisted partial nephrectomy for the prevention of perioperative complications. World J Urol. PubMedGoogle Scholar
  5. 5.
    Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49CrossRefGoogle Scholar
  6. 6.
    Chow WH, Devesa SS, Warren JL et al (1999) Rising incidence of renal cell cancer in the United States. JAMA 281:1628–1631CrossRefPubMedGoogle Scholar
  7. 7.
    Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gerlinger M, Horswell S, Larkin J et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46:225–233CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gibney GT, Aziz SA, Camp RL et al (2013) c‑Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol 24:343–349CrossRefPubMedGoogle Scholar
  10. 10.
    Hakimi AA, Chen YB, Wren J et al (2013) Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 63:848–854CrossRefPubMedGoogle Scholar
  11. 11.
    Hakimi AA, Ostrovnaya I, Reva B et al (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19:3259–3267CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Halverson SJ, Kunju LP, Bhalla R et al (2013) Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J Urol 189:441–446CrossRefPubMedGoogle Scholar
  13. 13.
    Hollingsworth JM, Miller DC, Daignault S et al (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98:1331–1334CrossRefPubMedGoogle Scholar
  14. 14.
    Ibragimova I, Maradeo ME, Dulaimi E et al (2013) Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics 8:486–493CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jang A, Patel HD, Riffon M et al (2017) Multiple growth periods predict unfavourable pathology in patients with small renal masses. BJU Int. Google Scholar
  16. 16.
    Jewett MA, Mattar K, Basiuk J et al (2011) Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol 60:39–44CrossRefPubMedGoogle Scholar
  17. 17.
    Joseph RW, Kapur P, Serie DJ et al (2014) Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 120:1059–1067CrossRefPubMedGoogle Scholar
  18. 18.
    Kapur P, Christie A, Raman JD et al (2014) BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 191:603–610CrossRefPubMedGoogle Scholar
  19. 19.
    Klatte T, Seligson DB, Larochelle J et al (2009) Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol Biomarkers Prev 18:894–900CrossRefPubMedGoogle Scholar
  20. 20.
    Kroeger N, Klatte T, Chamie K et al (2013) Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer 119:1547–1554CrossRefPubMedGoogle Scholar
  21. 21.
    Kunkle DA, Crispen PL, Chen DY et al (2007) Enhancing renal masses with zero net growth during active surveillance. J Urol 177:849–853 (discussion 853–844)CrossRefPubMedGoogle Scholar
  22. 22.
    Lang K, Danchenko N, Gondek K et al (2007) The burden of illness associated with renal cell carcinoma in the United States. Urol Oncol 25:368–375CrossRefPubMedGoogle Scholar
  23. 23.
    Lee H, Lee JK, Kim K et al (2016) Risk of metastasis for T1a renal cell carcinoma. World J Urol 34:553–559CrossRefPubMedGoogle Scholar
  24. 24.
    Leppert JT, Hanley J, Wagner TH et al (2014) Utilization of renal mass biopsy in patients with renal cell carcinoma. Urology 83:774–779CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Longo DL (2012) Tumor heterogeneity and personalized medicine. N Engl J Med 366:956–957CrossRefPubMedGoogle Scholar
  26. 26.
    Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. Lancet 361:2059–2067CrossRefPubMedGoogle Scholar
  27. 27.
    Manley BJ, Reznik E, Ghanaat M et al (2017) Characterizing recurrent and lethal small renal masses in clear cell renal cell carcinoma using recurrent somatic mutations. Urol Oncol. Google Scholar
  28. 28.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefPubMedGoogle Scholar
  29. 29.
    Osawa T, Hafez KS, Miller DC, Montgomery JS, Morgan TM, Palapattu GS, Weizer AZ, Caoili EM, Ellis JH, Kunju LP, Wolf JS (2016) Age, Gender and R.E.N.A.L. Nephrometry Score do not Improve the Accuracy of a Risk Stratification Algorithm Based on Biopsy and Mass Size for Assigning Surveillance versus Treatment of Renal Tumors. J Urol 195(3):574–580PubMedGoogle Scholar
  30. 30.
    Parker PA, Alba F, Fellman B et al (2013) Illness uncertainty and quality of life of patients with small renal tumors undergoing watchful waiting: a 2-year prospective study. Eur Urol 63:1122–1127CrossRefPubMedGoogle Scholar
  31. 31.
    Paterson C, Yew-Fung C, Sweeney C et al (2017) Predictors of growth kinetics and outcomes in small renal masses (SRM 〈/=4 cm in size): tayside active surveillance cohort (TASC) study. Eur J Surg Oncol 43:1589–1597CrossRefPubMedGoogle Scholar
  32. 32.
    Pena-Llopis S, Vega-Rubin-De-Celis S, Liao A et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44:751–759CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pierorazio PM, Johnson MH, Ball MW et al (2015) Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur Urol 68:408–415CrossRefPubMedGoogle Scholar
  34. 34.
    Rendon RA, Stanietzky N, Panzarella T et al (2000) The natural history of small renal masses. J Urol 164:1143–1147CrossRefPubMedGoogle Scholar
  35. 35.
    Robert Koch Institut (2015) Krebs in Deutschland. In: Krebsregisterdaten. Robert Koch Institut, Berlin S 102–105Google Scholar
  36. 36.
    La Rochelle J, Klatte T, Dastane A et al (2010) Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer 116:4696–4702CrossRefPubMedGoogle Scholar
  37. 37.
    Sato Y, Yoshizato T, Shiraishi Y et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45:860–867CrossRefPubMedGoogle Scholar
  38. 38.
    Shuch B, Hanley JM, Lai JC et al (2014) Adverse health outcomes associated with surgical management of the small renal mass. J Urol 191:301–308CrossRefPubMedGoogle Scholar
  39. 39.
    Smaldone MC, Kutikov A, Egleston BL et al (2012) Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer 118:997–1006CrossRefPubMedGoogle Scholar
  40. 40.
    Smaldone MC, Corcoran AT, Uzzo RG (2013) Active surveillance of small renal masses. Nat Rev Urol 10:266–274CrossRefPubMedGoogle Scholar
  41. 41.
    Sun M, Abdollah F, Bianchi M et al (2012) Treatment management of small renal masses in the 21st century: a paradigm shift. Ann Surg Oncol 19:2380–2387CrossRefPubMedGoogle Scholar
  42. 42.
    Uzosike AC, Patel HD, Alam R et al (2017) Growth kinetics of small renal masses on active surveillance: variability and results from the DISSRM registry. J Urol. PubMedGoogle Scholar
  43. 43.
    Varela I, Tarpey P, Raine K et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Volpe A, Panzarella T, Rendon RA et al (2004) The natural history of incidentally detected small renal masses. Cancer 100:738–745CrossRefPubMedGoogle Scholar
  45. 45.
    Volpe A, Kachura JR, Geddie WR et al (2007) Techniques, safety and accuracy of sampling of renal tumors by fine needle aspiration and core biopsy. J Urol 178:379–386CrossRefPubMedGoogle Scholar
  46. 46.
    Volpe A, Finelli A, Gill IS et al (2012) Rationale for percutaneous biopsy and histologic characterisation of renal tumours. Eur Urol 62:491–504CrossRefPubMedGoogle Scholar
  47. 47.
    Walther MM, Choyke PL, Glenn G et al (1999) Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 161:1475–1479CrossRefPubMedGoogle Scholar
  48. 48.
    Welch HG, Black WC (2010) Overdiagnosis in cancer. J Natl Cancer Inst 102:605–613CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang XC, Xu C, Mitchell RM et al (2013) Tumor evolution and intratumor heterogeneity of an oropharyngeal squamous cell carcinoma revealed by whole-genome sequencing. Neoplasia 15:1371–1378CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Urologie und KinderurologieUniversitätsmedizin MainzMainzDeutschland

Personalised recommendations