Der Urologe

, Volume 57, Issue 3, pp 285–294 | Cite as

Ablative Therapien kleiner Nierentumoren

  • M. C. Kriegmair
  • N. Wagener
  • S. J. Diehl
  • N. Rathmann
Leitthema
  • 75 Downloads

Zusammenfassung

Die überwiegende Anzahl von Nierenzellkarzinomen (NCC) wird heutzutage in frühen Stadien diagnostiziert. Die sog. kleinen Nierentumoren (<4 cm) zeichnen sich durch ein überwiegend langsames Wachstum mit sehr niedriger Metastasierungstendenz aus und sind in knapp 30 % benigner Pathologie. Entsprechend steigt der Bedarf nach weniger invasiven Therapiealternativen zur Nierentumorexzision. Mittlerweile steht ein breites Portfolio an lokal ablativen Techniken zur Behandlung kleiner Nierentumoren zur Verfügung. Dazu gehören die relativ gut untersuchte Radiofrequenzablation und Kryoablation über die neuere Mikrowellenablation bis hin zur irreversiblen Elektroporation mit experimentellem Charakter. Ablative Techniken können perkutan und bildgesteuert oder laparoskopisch eingesetzt werden. Insbesondere der perkutane Zugang ermöglicht im Vergleich zur Nierentumorexzision eine weniger invasive Therapie mit niedrigerem Komplikationsrisiko. Zwar ist das Risiko für ein Lokalrezidiv nach Tumorablation höher als nach chirurgischer Resektion, jedoch werden gute onkologische Langzeitergebnisse beobachtet, die sich bei kleinen Nierentumoren nicht von der Nierentumorexzision unterscheiden. Dies wird auch durch die Möglichkeit der Salvage-Therapie im Falle eines Rezidivs bedingt. Insbesondere ältere Patienten mit hohem operativen Risiko, sowie Patienten mit hereditären und multipel rezidivierenden Nierentumoren können vom Einsatz ablativer Techniken profitieren. Die in der S3-Leitlinie empfohlene Biopsie vor Ablation ist wichtig, um die Biologie der zu behandelnden Raumforderung zu kennen und eine Übertherapie benigner Raumforderungen zu verhindern.

Schlüsselwörter

Tumorablation Radiofrequenzablation Kryoablation Elektroporation, irreversible Mikrowellenablation 

Ablative therapy of small renal masses

Abstract

Renal cell cancer is nowadays predominantly diagnosed in early stages due to the widespread use of sectional imaging for unrelated symptoms. Small renal masses (<4 cm) feature a largely indolent biology with a very low risk for metastasis or even a benign biology in up to 30% of the cases. Consequently, there is a need for less invasive therapeutic alternatives to nephron-sparing surgery. Meanwhile, there is a broad portfolio of local ablation techniques to treat small renal tumors. These include the extensively studied radiofrequency ablation and cryoablation techniques as well as newer modalities like microwave ablation and irreversible electroporation as more experimental techniques. Tumor ablation can be performed percutaneously under image guidance or laparoscopically. In particular, the percutaneous approach is a less invasive alternative to nephron-sparing surgery with lower risk for complications. Comparative studies and meta-analyses report a higher risk for local recurrence after renal tumor ablation compared to surgery. However, long-term oncological results after treatment of small renal masses are promising and do not seem to differ from partial nephrectomy. The possibility for salvage therapy in case of recurrence also accounts for this finding. Especially old patients with an increased risk of surgical and anesthesiological complications as well as patients with recurrent and multiple hereditary renal cell carcinomas may benefit from tumor ablation. Tumor biopsy prior to intervention is associated with very low morbidity rates and is oncologically safe. It can help to assess the biology of the renal mass and prevent therapy of benign lesions.

Keywords

Tumor ablation Radiofrequency ablation Cryoablation Irreversible electroporation Microwave ablation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M.C. Kriegmair, N. Wagener, S.J. Diehl und N. Rathmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    S3-Leitlinie Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms. AWMF-Registernummer: 043/017-OL 2017.Google Scholar
  2. 2.
    Pichler M, Hutterer GC, Chromecki TF et al (2012) Histologic tumor necrosis is an independent prognostic indicator for clear cell and papillary renal cell carcinoma. Am J Clin Pathol 137:283–289CrossRefPubMedGoogle Scholar
  3. 3.
    Thompson RH, Hill JR, Babayev Y et al (2009) Metastatic renal cell carcinoma risk according to tumor size. J Urol 182:41–45CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kavoussi N, Canvasser N, Caddedu J (2016) Ablative therapies for the treatment of small renal masses: a review of different modalities and outcomes. Curr Urol Rep 17:59CrossRefPubMedGoogle Scholar
  5. 5.
    Venkatesan AM, Wood BJ, Gervais DA (2011) Percutaneous ablation in the kidney. Radiology 261:375–391CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moskowitz D, Chang J, Ziogas A, Anton-Culver H, Clayman RV (2016) Treatment for T1a renal cancer substratified by size: “less is more”. J Urol 196:1000–1007CrossRefPubMedGoogle Scholar
  7. 7.
    Lu DS, Kee ST, Lee EW (2013) Irreversible electroporation: ready for prime time? Tech Vasc Interv Radiol 16:277–286CrossRefPubMedGoogle Scholar
  8. 8.
    Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT Jr., Brace CL (2014) Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation – what should you use and why? Radiographics 34:1344–1362CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Al-Alem I, Pillai K, Akhter J, Chua TC, Morris DL (2014) Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Surg Innov 21:269–276CrossRefPubMedGoogle Scholar
  10. 10.
    Rehman J, Landman J, Lee D et al (2004) Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 18:83–104CrossRefPubMedGoogle Scholar
  11. 11.
    Varkarakis IM, Allaf ME, Inagaki T et al (2005) Percutaneous radio frequency ablation of renal masses: results at a 2-year mean followup. J Urol 174:456–460 (discussion 60)CrossRefPubMedGoogle Scholar
  12. 12.
    Clark TW, Malkowicz B, Stavropoulos SW et al (2006) Radiofrequency ablation of small renal cell carcinomas using multitined expandable electrodes: preliminary experience. J Vasc Interv Radiol 17:513–519CrossRefPubMedGoogle Scholar
  13. 13.
    Zagoria RJ, Pettus JA, Rogers M, Werle DM, Childs D, Leyendecker JR (2011) Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 77:1393–1397CrossRefPubMedGoogle Scholar
  14. 14.
    Ferakis N, Bouropoulos C, Granitsas T, Mylona S, Poulias I (2010) Long-term results after computed-tomography-guided percutaneous radiofrequency ablation for small renal tumors. J Endourol 24:1909–1913CrossRefPubMedGoogle Scholar
  15. 15.
    Psutka SP, Feldman AS, McDougal WS, McGovern FJ, Mueller P, Gervais DA (2013) Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol 63:486–492CrossRefPubMedGoogle Scholar
  16. 16.
    Georgiades C, Rodriguez R (2013) Renal tumor ablation. Tech Vasc Interv Radiol 16:230–238CrossRefPubMedGoogle Scholar
  17. 17.
    Erinjeri JP, Clark TW (2010) Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 21:S187–S191CrossRefPubMedGoogle Scholar
  18. 18.
    Inoue M, Nakatsuka S, Yashiro H et al (2012) Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol 23:295–302 (quiz 5)CrossRefPubMedGoogle Scholar
  19. 19.
    Pirasteh A, Snyder L, Boncher N, Passalacqua M, Rosenblum D, Prologo JD (2011) Cryoablation vs. radiofrequency ablation for small renal masses. Acad Radiol 18:97–100CrossRefPubMedGoogle Scholar
  20. 20.
    Atwell TD, Schmit GD, Boorjian SA et al (2013) Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol 200:461–466CrossRefPubMedGoogle Scholar
  21. 21.
    Larcher A, Fossati N, Mistretta F et al (2015) Long-term oncologic outcomes of laparoscopic renal cryoablation as primary treatment for small renal masses. Urol Oncol 33(22):e1–e9Google Scholar
  22. 22.
    Johnson S, Pham KN, See W, Begun FP, Langenstroer P (2014) Laparoscopic cryoablation for clinical stage T1 renal masses: long-term oncologic outcomes at the Medical College of Wisconsin. Urology 84:613–618CrossRefPubMedGoogle Scholar
  23. 23.
    Nielsen TK, Lagerveld BW, Keeley F et al (2017) Oncological outcomes and complication rates after laparoscopic-assisted cryoablation: a European Registry for Renal Cryoablation (EuRECA) multi-institutional study. BJU Int 119:390–395CrossRefPubMedGoogle Scholar
  24. 24.
    Regier M, Chun F (2015) Thermal ablation of renal tumors: indications, techniques and results. Dtsch Arztebl Int 112:412–418PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hebbadj S, Cazzato RL, Garnon J et al (2017) Safety considerations and local tumor control following percutaneous image-guided cryoablation of T1b renal tumors. Cardiovasc Intervent Radiol.  https://doi.org/10.1007/s00270-017-1820-0 PubMedGoogle Scholar
  26. 26.
    Yu J, Zhang G, Liang P et al (2015) Midterm results of percutaneous microwave ablation under ultrasound guidance versus retroperitoneal laparoscopic radial nephrectomy for small renal cell carcinoma. Abdom Imaging 40:3248–3256CrossRefPubMedGoogle Scholar
  27. 27.
    Floridi C, De Bernardi I, Fontana F et al (2014) Microwave ablation of renal tumors: state of the art and development trends. Radiol Med 119:533–540CrossRefPubMedGoogle Scholar
  28. 28.
    Lee EW, Thai S, Kee ST (2010) Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver 4(Suppl 1):S99–S104CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Adeyanju OO, Al-Angari HM, Sahakian AV (2012) The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol 46:126–135CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ben-David E, Ahmed M, Faroja M et al (2013) Irreversible electroporation: treatment effect is susceptible to local environment and tissue properties. Radiology 269:738–747CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scheffer HJ, Nielsen K, de Jong MC et al (2014) Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 25:997–1011 (quiz)CrossRefPubMedGoogle Scholar
  32. 32.
    Wendler JJ, Porsch M, Nitschke S et al (2015) A prospective Phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp Clin Trials 43:10–19CrossRefPubMedGoogle Scholar
  33. 33.
    Diehl SJ, Rathmann N, Kostrzewa M et al (2016) Irreversible electroporation for surgical renal masses in solitary kidneys: short-term Interventional and functional outcome. J Vasc Interv Radiol 27:1407–1413CrossRefPubMedGoogle Scholar
  34. 34.
    Thomson KR, Cheung W, Ellis SJ et al (2011) Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 22:611–621CrossRefPubMedGoogle Scholar
  35. 35.
    Trimmer CK, Khosla A, Morgan M, Stephenson SL, Ozayar A, Cadeddu JA (2015) Minimally invasive Percutaneous treatment of small renal tumors with irreversible Electroporation: a single-center experience. J Vasc Interv Radiol 26:1465–1471CrossRefPubMedGoogle Scholar
  36. 36.
    Singla N, Gahan J (2016) New technologies in tumor ablation. Curr Opin Urol 26:248–253CrossRefPubMedGoogle Scholar
  37. 37.
    Rashid MF, Hecht EM, Steinman JA, Kluger MD (2017) Irreversible electroporation of pancreatic adenocarcinoma: a primer for the radiologist. Abdom Radiol (NY).  https://doi.org/10.1007/s00261-017-1349-3 Google Scholar
  38. 38.
    Bhindi B, Mason RJ, Haddad MM et al (2017) Outcomes after Cryoablation versus partial nephrectomy for sporadic renal tumors in a solitary kidney: a propensity score analysis. Eur Urol 73:254–259CrossRefPubMedGoogle Scholar
  39. 39.
    Young EE, Castle SM, Gorbatiy V, Leveillee RJ (2012) Comparison of safety, renal function outcomes and efficacy of laparoscopic and percutaneous radio frequency ablation of renal masses. J Urol 187:1177–1182CrossRefPubMedGoogle Scholar
  40. 40.
    Boone J, Bex A, Prevoo W (2012) Percutaneous radiofrequency ablation of a small renal mass complicated by appendiceal perforation. Cardiovasc Intervent Radiol 35:695–699CrossRefPubMedGoogle Scholar
  41. 41.
    Rivero JR, De La Cerda J 3rd, Wang H et al (2017) Partial Nephrectomy versus Thermal Ablation for Clinical Stage T1 Renal Masses: Systematic Review and Meta-Analysis of More than 3,900 Patients. J Vasc Interv Radiol.  https://doi.org/10.1016/j.jvir.2017.08.013 Google Scholar
  42. 42.
    Atwell TD, Carter RE, Schmit GD et al (2012) Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol 23:48–54CrossRefPubMedGoogle Scholar
  43. 43.
    Bhindi B, Thompson RH, Mason RJ et al (2017) Comprehensive assessment of renal tumour complexity in a large percutaneous cryoablation cohort. BJU Int 119:905–912CrossRefPubMedGoogle Scholar
  44. 44.
    Pierorazio PM, Johnson MH, Patel HD et al (2016) Management of renal masses and localized renal cancer: systematic review and meta-analysis. J Urol 196:989–999CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yin X, Cui L, Li F, Qi S, Yin Z, Gao J (2015) Radiofrequency ablation versus partial nephrectomy in treating small renal tumors: a systematic review and meta-analysis. Medicine (Baltimore) 94:e2255CrossRefGoogle Scholar
  46. 46.
    Schmit GD, Kurup AN, Weisbrod AJ et al (2014) ABLATE: a renal ablation planning algorithm. Ajr Am J Roentgenol 202:894–903CrossRefPubMedGoogle Scholar
  47. 47.
    Larcher A, Sun M, Dell’Oglio P et al (2017) Mortality, morbidity and healthcare expenditures after local tumour ablation or partial nephrectomy for T1A kidney cancer. Eur J Surg Oncol 43:815–822CrossRefPubMedGoogle Scholar
  48. 48.
    Hu SL, Chang A, Perazella MA et al (2016) The Nephrologist’s tumor: basic biology and management of renal cell carcinoma. J Am Soc Nephrol 27:2227–2237CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dagenais J, Maurice MJ, Mouracade P et al (2017) The synergistic influence of ischemic time and surgical precision on acute kidney injury after robotic partial nephrectomy. Urology 107:132–137CrossRefPubMedGoogle Scholar
  50. 50.
    Woldu SL, Thoreson GR, Okhunov Z et al (2015) Comparison of renal parenchymal volume preservation between partial nephrectomy, cryoablation, and radiofrequency ablation using 3D volume measurements. J Endourol 29:948–955CrossRefPubMedGoogle Scholar
  51. 51.
    Patel HD, Pierorazio PM, Johnson MH et al (2017) Renal functional outcomes after surgery, ablation, and active surveillance of localized renal tumors: a systematic review and meta-analysis. Clin J Am Soc Nephrol 12:1057–1069CrossRefPubMedGoogle Scholar
  52. 52.
    Altunrende F, Autorino R, Hillyer S et al (2011) Image guided percutaneous probe ablation for renal tumors in 65 solitary kidneys: functional and oncological outcomes. J Urol 186:35–41CrossRefPubMedGoogle Scholar
  53. 53.
    Schmit GD, Thompson RH, Kurup AN et al (2012) Percutaneous cryoablation of solitary sporadic renal cell carcinomas. BJU Int 110:E526–E531CrossRefPubMedGoogle Scholar
  54. 54.
    Long JA, Bernhard JC, Bigot P et al (2017) Partial nephrectomy versus ablative therapy for the treatment of renal tumors in an imperative setting. World J Urol 35:649–656CrossRefPubMedGoogle Scholar
  55. 55.
    Thompson RH, Atwell T, Schmit G et al (2015) Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol 67:252–259CrossRefPubMedGoogle Scholar
  56. 56.
    Campbell SC, Novick AC, Belldegrun A et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182:1271–1279CrossRefPubMedGoogle Scholar
  57. 57.
    Best SL, Park SK, Youssef RF et al (2012) Long-term outcomes of renal tumor radio frequency ablation stratified by tumor diameter: size matters. J Urol 187:1183–1189CrossRefPubMedGoogle Scholar
  58. 58.
    Nguyen CT, Lane BR, Kaouk JH et al (2008) Surgical salvage of renal cell carcinoma recurrence after thermal ablative therapy. J Urol 180:104–109 (discussion 9)CrossRefPubMedGoogle Scholar
  59. 59.
    Kowalczyk KJ, Hooper HB, Linehan WM, Pinto PA, Wood BJ, Bratslavsky G (2009) Partial nephrectomy after previous radio frequency ablation: the National Cancer Institute experience. J Urol 182:2158–2163CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jimenez JA, Zhang Z, Zhao J et al (2016) Surgical salvage of thermal ablation failures for renal cell carcinoma. J Urol 195:594–600CrossRefPubMedGoogle Scholar
  61. 61.
    Karam JA, Wood CG, Compton ZR et al (2015) Salvage surgery after energy ablation for renal masses. BJU Int 115:74–80CrossRefPubMedGoogle Scholar
  62. 62.
    Bauknecht HC, Romano VC, Rogalla P et al (2010) Intra- and interobserver variability of linear and volumetric measurements of brain metastases using contrast-enhanced magnetic resonance imaging. Invest Radiol 45:49–56CrossRefPubMedGoogle Scholar
  63. 63.
    Watanabe H, Yamamoto S, Kunitoh H et al (2003) Tumor response to chemotherapy: the validity and reproducibility of RECIST guidelines in NSCLC patients. Cancer Sci 94:1015–1020CrossRefPubMedGoogle Scholar
  64. 64.
    Shankar S, van Sonnenberg E, Desai J, Dipiro PJ, Van Den Abbeele A, Demetri GD (2005) Gastrointestinal stromal tumor: new nodule-within-a-mass pattern of recurrence after partial response to imatinib mesylate. Radiology 235:892–898CrossRefPubMedGoogle Scholar
  65. 65.
    Suzuki C, Jacobsson H, Hatschek T et al (2008) Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics 28:329–344CrossRefPubMedGoogle Scholar
  66. 66.
    Elmi A, Hedgire SS, Covarrubias D, Abtahi SM, Hahn PF, Harisinghani M (2013) Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol 68:e524–31CrossRefPubMedGoogle Scholar
  67. 67.
    Iannuccilli JD, Dupuy DE, Mayo-Smith WW (2012) Solid renal masses: effectiveness and safety of image-guided percutaneous radiofrequency ablation. Abdom Imaging 37:647–658CrossRefPubMedGoogle Scholar
  68. 68.
    Capogrosso P, Capitanio U, La Croce G et al (2016) Follow-up after treatment for renal cell carcinoma: the evidence beyond the guidelines. Eur Urol Focus 1:272–281CrossRefPubMedGoogle Scholar
  69. 69.
    Donat SM, Diaz M, Bishoff JT et al (2013) Follow-up for clinically localized renal neoplasms: AUA guideline. J Urol 190:407–416CrossRefPubMedGoogle Scholar
  70. 70.
    Ljungberg B, Bensalah K, Canfield S et al (2015) EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 67:913–924CrossRefPubMedGoogle Scholar
  71. 71.
    Larcher A, Fossati N, Tian Z et al (2016) Prediction of complications following partial nephrectomy: implications for ablative techniques candidates. Eur Urol 69:676–682CrossRefPubMedGoogle Scholar
  72. 72.
    Sun M, Becker A, Tian Z et al (2014) Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur Urol 65:235–241CrossRefPubMedGoogle Scholar
  73. 73.
    Hwang JJ, Walther MM, Pautler SE et al (2004) Radio frequency ablation of small renal tumors:: intermediate results. J Urol 171:1814–1818CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. C. Kriegmair
    • 1
  • N. Wagener
    • 1
  • S. J. Diehl
    • 2
  • N. Rathmann
    • 2
  1. 1.Department of UrologyUniversity Medical Centre MannheimMannheimDeutschland
  2. 2.Institute of Clinical Radiology and Nuclear MedicineUniversity Medical Centre MannheimMannheimDeutschland

Personalised recommendations