Skip to main content
Log in

Bildgebung des lokal fortgeschrittenen Prostatakarzinoms

Die Bedeutung von Ultraschall und insbesondere MRT

Imaging of locally advanced prostate cancer

Importance of ultrasound and especially MRI

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Das Prostatakarzinom (PCa) ist der in Deutschland häufigste maligne Tumor des Mannes und stellt damit besondere Ansprüche an eine differenzierte Bildgebung und risikoadaptierte Therapieansätze. Die multiparametrische Magnetresonanztomographie (mpMRT) der Prostata ermöglicht eine zuverlässige Darstellung klinisch signifikanter Karzinome und ist die aktuell führende bildgebende Methode zur Detektion, Charakterisierung und Ausbreitungsdiagnostik von Prostatatumoren. Gemäß der deutschen S3-Leitlinie wird die mpMRT derzeit insbesondere bei Patienten mit vorangegangener negativer TRUS-Biopsie (transrektaler Ultraschall) und anhaltendem Krebsverdacht empfohlen. Der serielle Einsatz der mpMRT im prätherapeutischen Setting kann zukünftig die individuelle Therapieplanung des lokal fortgeschrittenen PCa unterstützen.

Abstract

Prostate cancer is the most common male malignant tumor in Germany, which thus places growing demands on differentiated imaging and risk-adapted therapeutic approaches. Multiparametric MRI (mpMRI) of the prostate enables reliable detection of clinically significant cancers and is currently the leading imaging modality for the detection, characterization, and local staging of prostate cancer. According to the German S3 guideline, mpMRI of the prostate is currently primarily recommended in patients with previous negative TRUS biopsies and persisting tumor suspicion. The serial use of mpMRI in the pretherapeutic setting can support individual therapy planning of patients with locally advanced prostate cancer in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Haas GP, Delongchamps N, Brawley OW et al (2008) The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol 15(1):3866–3871

    PubMed  PubMed Central  Google Scholar 

  2. Baras NBB, Bertz J et al (2013) Übersicht zu den Krebssterbefällen. In: Robert Koch Institut (Hrsg) Krebs in Deutschland. Robert Koch Institut, Berlin, S 17

    Google Scholar 

  3. O’Sullivan B, Brierley J, Byrd D et al (2017) The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol 18(7):849–851

    Article  PubMed  Google Scholar 

  4. Brierley JG, Gospodarowicz MK, Wittekind C (2017) TNM classification of malignant tumours, 8. Aufl. Wiley-Blackwell, Hoboken

    Google Scholar 

  5. Godoy G, Tareen BU, Lepor H (2009) Site of positive surgical margins influences biochemical recurrence after radical prostatectomy. BJU Int 104(11):1610–1614

    Article  PubMed  Google Scholar 

  6. DGU. S3-Leitlinie Prostatakarzinom Version 1.03, März 2011. 2009. 2011.

  7. Obek C, Doganca T, Demirci E et al (2017) The accuracy of 68 Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-017-3752-y

    PubMed  Google Scholar 

  8. Gupta M, Choudhury PS, Hazarika D, Rawal S (2017) A comparative study of 68gallium-prostate specific membrane antigen positron emission tomography-computed tomography and magnetic resonance imaging for lymph node staging in high risk prostate cancer patients: an initial experience. World J Nucl Med 16(3):186–191

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heidenreich A, Aus G, Bolla M et al (2008) EAU guidelines on prostate cancer. Eur Urol 53(1):68–80

    Article  PubMed  Google Scholar 

  10. Mullerad M, Hricak H, Kuroiwa K et al (2005) Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol 174(6):2158–2163

    Article  PubMed  Google Scholar 

  11. Hoogendam A, Buntinx F, de Vet HC (1999) The diagnostic value of digital rectal examination in primary care screening for prostate cancer: a meta-analysis. Fam Pract 16(6):621–626

    Article  CAS  PubMed  Google Scholar 

  12. Hricak H, Choyke PL, Eberhardt SC et al (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243(1):28–53

    Article  PubMed  Google Scholar 

  13. Purohit RS, Shinohara K, Meng MV, Carroll PR (2003) Imaging clinically localized prostate cancer. Urol Clin North Am 30(2):279–293

    Article  PubMed  Google Scholar 

  14. Dickinson L, Ahmed HU, Allen C et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494

    Article  PubMed  Google Scholar 

  15. Kenigsberg AP, Tamada T, Rosenkrantz AB et al (2017) Multi-parametric magnetic resonance imaging (mpMRI) identifies significant apical prostate cancers. BJU Int. https://doi.org/10.1111/bju.13987

    PubMed  Google Scholar 

  16. Gupta RT, Spilseth B, Patel N et al (2016) Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer. Abdom Radiol (NY) 41(5):831–843

    Article  Google Scholar 

  17. Nowak J, Malzahn U, Baur AD et al (2016) The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer. Acta Radiol 57(1):107. https://doi.org/10.1177/0284185114561915

    Article  PubMed  Google Scholar 

  18. Barrett T, Turkbey B, Choyke PL (2015) PI-RADS version 2: what you need to know. Clin Radiol 70(11):1165. https://doi.org/10.1016/j.crad.2015.06.093

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822

    Article  PubMed  Google Scholar 

  20. Rosenkrantz AB, Verma S, Turkbey B (2015) Prostate cancer: top places where tumors hide on multiparametric MRI. AJR Am J Roentgenol 204(4):W449–W456

    Article  PubMed  Google Scholar 

  21. Wang L, Hricak H, Kattan MW et al (2006) Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology 238(2):597–603

    Article  PubMed  Google Scholar 

  22. Wang L, Hricak H, Kattan MW et al (2006) Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol 186(3):743–748

    Article  PubMed  Google Scholar 

  23. Lee T, Hoogenes J, Wright I et al (2017) Utility of preoperative 3 Tesla pelvic phased-array multiparametric magnetic resonance imaging in prediction of extracapsular extension and seminal vesicle invasion of prostate cancer and its impact on surgical margin status: Experience at a Canadian academic tertiary care centre. Can Urol Assoc J 11(5):E174–E178

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee H, Kim CK, Park BK et al (2017) Accuracy of preoperative multiparametric magnetic resonance imaging for prediction of unfavorable pathology in patients with localized prostate cancer undergoing radical prostatectomy. World J Urol 35(6):929–934

    Article  PubMed  Google Scholar 

  25. Heuck A, Scheidler J, Sommer B et al (2003) MR imaging of prostate cancer]. MR-Tomographie des Prostatakarzinoms. Radiologe 43(6):464–473

    Article  CAS  PubMed  Google Scholar 

  26. Tutolo M, Fossati N, Van der Aa F et al (2017) Magnetic resonance imaging for membranous urethral length assessment prior to radical prostatectomy: can it really improve prostate cancer management? Eur Urol 71(3):379–380

    Article  PubMed  Google Scholar 

  27. Roethke M, Kaufmann S, Kniess M et al (2014) Seminal vesicle invasion: accuracy and analysis of infiltration patterns with high-spatial resolution T2-weighted sequences on endorectal magnetic resonance imaging. Urol Int 92(3):294–299

    Article  CAS  PubMed  Google Scholar 

  28. Kayat Bittencourt L, Litjens G, Hulsbergen-van de Kaa CA et al (2015) Prostate cancer: the European society of urogenital radiology prostate imaging reporting and data system criteria for predicting extraprostatic extension by using 3‑T multiparametric MR imaging. Radiology 276(2):479–489

    Article  PubMed  Google Scholar 

  29. Lista F, Gimbernat H, Caceres F et al (2014) Multiparametric magnetic resonance imaging for the assessment of extracapsular invasion and other staging parameters in patients with prostate cancer candidates for radical prostatectomy. Actas Urol Esp 38(5):290–297

    Article  CAS  PubMed  Google Scholar 

  30. Raskolnikov D, George AK, Rais-Bahrami S et al (2014) Multiparametric magnetic resonance imaging and image-guided biopsy to detect seminal vesicle invasion by prostate cancer. J Endourol 28(11):1283–1289

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soylu FN, Peng Y, Jiang Y et al (2013) Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology 267(3):797–806

    Article  PubMed  Google Scholar 

  32. Somford DM, Hamoen EH, Futterer JJ et al (2013) The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol 190(5):1728–1734

    Article  CAS  PubMed  Google Scholar 

  33. Raskolnikov D, George AK, Rais-Bahrami S et al (2015) The role of magnetic resonance image guided prostate biopsy in stratifying men for risk of Extracapsular extension at radical prostatectomy. J Urol 194(1):105–111

    Article  PubMed  Google Scholar 

  34. de Rooij M, Hamoen EH, Witjes JA et al (2016) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 70(2):233–245

    Article  PubMed  Google Scholar 

  35. Jager GJ, Ruijter ET, van de Kaa CA et al (1996) Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol 166(4):845–852

    Article  CAS  PubMed  Google Scholar 

  36. Kido A, Tamada T, Sone T et al (2017) Incremental value of high b value diffusion-weighted magnetic resonance imaging at 3‑T for prediction of extracapsular extension in patients with prostate cancer: preliminary experience. Radiol Med 122(3):228–238

    Article  PubMed  Google Scholar 

  37. Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63(4):387–395

    Article  CAS  PubMed  Google Scholar 

  38. Verburg FA, Pfister D, Heidenreich A et al (2016) Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging 43(3):397–403

    Article  CAS  PubMed  Google Scholar 

  39. Budaus L, Leyh-Bannurah SR, Salomon G et al (2016) Initial experience of (68)ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 69(3):393–396

    Article  PubMed  Google Scholar 

  40. Grimm MO, Thomas C, Frohner M et al (2010) Pelvic lymphadenectomy and radical prostatectomy. Recommendations of the German S3 guideline. Urologe A 49(2):206–210

    Article  PubMed  Google Scholar 

  41. Itatani R, Namimoto T, Atsuji S et al (2014) Negative predictive value of multiparametric MRI for prostate cancer detection: outcome of 5‑year follow-up in men with negative findings on initial MRI studies. Eur J Radiol 83(10):1740–1745

    Article  CAS  PubMed  Google Scholar 

  42. Pokorny MR, de Rooij M, Duncan E et al (2014) Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 66(1):22–29

    Article  PubMed  Google Scholar 

  43. Matsuoka Y, Ishioka J, Tanaka H et al (2017) Impact of the prostate imaging reporting and data system, version 2, on MRI diagnosis for extracapsular extension of prostate cancer. AJR Am J Roentgenol 209(2):W76–W84

    Article  PubMed  Google Scholar 

  44. Park SY, Oh YT, Jung DC et al (2016) Prediction of biochemical recurrence after radical prostatectomy with PI-RADS version 2 in prostate cancers: initial results. Eur Radiol 26(8):2502–2509

    Article  PubMed  Google Scholar 

  45. Joniau SG, Van Baelen AA, Hsu CY, Van Poppel HP (2012) Complications and functional results of surgery for locally advanced prostate cancer. Adv Urol. https://doi.org/10.1155/2012/706309

    Google Scholar 

  46. Vora AA, Marchalik D, Kowalczyk KJ et al (2013) Robotic-assisted prostatectomy and open radical retropubic prostatectomy for locally-advanced prostate cancer: multi-institution comparison of oncologic outcomes. Prostate Int 1(1):31–36

    Article  PubMed  PubMed Central  Google Scholar 

  47. van den Bos W, Muller BG, Ahmed H et al (2014) Focal therapy in prostate cancer: international multidisciplinary consensus on trial design. Eur Urol 65(6):1078–1083

    Article  PubMed  Google Scholar 

  48. Ouzzane A, Betrouni N, Valerio M et al (2017) Focal therapy as primary treatment for localized prostate cancer: definition, needs and future. Future Oncol 13(8):727–741

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Tanderup K, Cunha A et al (2017) Magnetic resonance imaging basics for the prostate brachytherapist. Brachytherapy 16(4):715–727

    Article  PubMed  Google Scholar 

  50. Valerio M, Ahmed HU, Emberton M et al (2014) The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 66(4):732–751

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krempien RC, Schubert K, Zierhut D et al (2002) Open low-field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 53(5):1350–1360

    Article  PubMed  Google Scholar 

  52. Sannazzari GL, Ragona R, Ruo Redda MG et al (2002) CT-MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer. Br J Radiol 75(895):603–607

    Article  CAS  PubMed  Google Scholar 

  53. Freedland SJ, Rumble RB, Finelli A et al (2014) Adjuvant and salvage radiotherapy after prostatectomy: American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol 32(34):3892–3898

    Article  PubMed  Google Scholar 

  54. Mendhiratta N, Taneja SS, Rosenkrantz AB (2016) The role of MRI in prostate cancer diagnosis and management. Future Oncol 12(21):2431–2443

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nörenberg.

Ethics declarations

Interessenkonflikt

O. Solyanik, B. Schlenker, C. Gratzke, B. Ertl-Wagner, D. A. Clevert, C. Stief, J. Ricke und D. Nörenberg geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyanik, O., Schlenker, B., Gratzke, C. et al. Bildgebung des lokal fortgeschrittenen Prostatakarzinoms. Urologe 56, 1383–1393 (2017). https://doi.org/10.1007/s00120-017-0515-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-017-0515-0

Schlüsselwörter

Keywords

Navigation