Der Urologe

, Volume 56, Issue 6, pp 720–727 | Cite as

Pathogenese der Harnwegsinfektion

Ein Update
  • G. Magistro
  • J. Marcon
  • S. Schubert
  • C. Gratzke
  • C. G. Stief
Leitthema
  • 293 Downloads

Zusammenfassung

Als einer der häufigsten bakteriellen Infektionen weltweit ist die Harnwegsinfektion (HWI) mittlerweile zu einem gesundheitspolitischen Thema von sozioökonomischer Relevanz avanciert. Jede zweite Frau wird einmal in ihrem Leben mit einer HWI konfrontiert. Durch das zunehmende Aufkommen multiresistenter Bakterien und die stagnierende Entwicklung neuer Antibiotika ist der Anspruch an das Management der HWI in den letzten Jahren deutlich gewachsen. Kenntnis über die komplexen Wirt-Erreger-Interaktionen im Rahmen einer Infektion bietet die Gelegenheit, neue therapeutische Zielstrukturen zu identifizieren. Der hier vorliegende Beitrag stellt relevante molekulare Beobachtungen der Pathogenese der bakteriellen HWI vor und beleuchtet deren klinische Bedeutung.

Schlüsselwörter

Reservoire, intrazelluläres Virulenzfaktoren Antibiotika Harntrakt Bakteriurie 

Pathogenesis of urinary tract infections

An update

Abstract

Urinary tract infections are among the most common bacterial infections worldwide. The management has become a public health concern of socioeconomic importance. Every second woman will experience at least one episode in her lifetime. Due to the emergence of multiresistant pathogens and the developmental void, treatment has become more challenging over the years. Deciphering the complex molecular interaction between host and pathogen is necessary to identify potent treatment targets for future approaches. The objective of this review is to present novel aspects on the pathogenesis of urinary tract infections and its relevance for clinical practice.

Keywords

Intracellular bacterial communities Virulence factors Antibiotics Urinary tract Bacteriuria 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

G. Magistro, J. Marcon, S. Schubert, C. Gratzke und C. G. Stief geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183(Suppl 1):S1–S4CrossRefPubMedGoogle Scholar
  2. 2.
    Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13(5):269–284CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Foxman B (1990) Recurring urinary tract infection: incidence and risk factors. Am J Public Health 80(3):331–333CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Foxman B, Barlow R, D’Arcy H, Gillespie B, Sobel JD (2000) Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 10(8):509–515CrossRefPubMedGoogle Scholar
  5. 5.
    Kucheria R, Dasgupta P, Sacks SH, Khan MS, Sheerin NS (2005) Urinary tract infections: new insights into a common problem. Postgrad Med J 81(952):83–86CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140CrossRefPubMedGoogle Scholar
  7. 7.
    Russo TA, Johnson JR (2000) Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181(5):1753–1754CrossRefPubMedGoogle Scholar
  8. 8.
    Vila J, Saez-Lopez E, Johnson JR, Romling U, Dobrindt U, Canton R et al (2016) Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev. doi: 10.1093/femsre/fuw005 PubMedGoogle Scholar
  9. 9.
    Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA (2013) Chaperone-usher fimbriae of Escherichia coli. PLOS ONE 8(1):e52835CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eto DS, Jones TA, Sundsbak JL, Mulvey MA (2007) Integrin-mediated host cell invasion by type 1‑piliated uropathogenic Escherichia coli. PLOS Pathog 3(7):e100CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ (2012) Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36(3):616–648CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R et al (2008) Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 181(10):6702–6706CrossRefPubMedGoogle Scholar
  13. 13.
    Brumbaugh AR, Mobley HL (2012) Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines 11(6):663–676CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A et al (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181(2):774–778CrossRefPubMedGoogle Scholar
  15. 15.
    Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J et al (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276(5312):607–611CrossRefPubMedGoogle Scholar
  16. 16.
    Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR et al (2011) Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3(109):109ra15CrossRefGoogle Scholar
  17. 17.
    Klein T, Abgottspon D, Wittwer M, Rabbani S, Herold J, Jiang X et al (2010) FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J Med Chem 53(24):8627–8641CrossRefPubMedGoogle Scholar
  18. 18.
    Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA, Janetka JW et al (2013) A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 208(6):921–928CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, Conover MS et al (2014) Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. MBio 5(6):e02038CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kranjcec B, Papes D, Altarac S (2014) D‑mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J Urol 32(1):79–84CrossRefPubMedGoogle Scholar
  21. 21.
    Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941CrossRefPubMedGoogle Scholar
  23. 23.
    Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2(12):946–953CrossRefPubMedGoogle Scholar
  24. 24.
    Garenaux A, Caza M, Dozois CM (2011) The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol 153(1–2):89–98CrossRefPubMedGoogle Scholar
  25. 25.
    Garcia EC, Brumbaugh AR, Mobley HL (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79(3):1225–1235CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL (2009) Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLOS Pathog 5(9):e1000586CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brumbaugh AR, Smith SN, Mobley HL (2013) Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect Immun 81(9):3309–3316CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wieser A, Magistro G, Norenberg D, Hoffmann C, Schubert S (2012) First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 302(1):10–18CrossRefPubMedGoogle Scholar
  29. 29.
    Wieser A, Romann E, Magistro G, Hoffmann C, Norenberg D, Weinert K et al (2010) A multiepitope subunit vaccine conveys protection against extraintestinal pathogenic Escherichia coli in mice. Infect Immun 78(8):3432–3442CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mushtaq S, Warner M, Livermore D (2010) Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. J Antimicrob Chemother 65(2):266–270CrossRefPubMedGoogle Scholar
  31. 31.
    Page MG, Dantier C, Desarbre E (2010) In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother 54(6):2291–2302CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Page MG, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A (2011) In vitro and in vivo properties of BAL30376, a beta-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple beta-lactamases. Antimicrob Agents Chemother 55(4):1510–1519CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Roos V, Ulett GC, Schembri MA, Klemm P (2006) The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect Immun 74(1):615–624CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Darouiche RO, Green BG, Donovan WH, Chen D, Schwartz M, Merritt J et al (2011) Multicenter randomized controlled trial of bacterial interference for prevention of urinary tract infection in patients with neurogenic bladder. Urology 78(2):341–346CrossRefPubMedGoogle Scholar
  35. 35.
    Sunden F, Hakansson L, Ljunggren E, Wullt B (2010) Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 184(1):179–185CrossRefPubMedGoogle Scholar
  36. 36.
    Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D, Voigt B et al (2010) Host imprints on bacterial genomes-rapid, divergent evolution in individual patients. PLOS Pathog 6(8):e1001078CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Godaly G, Ambite I, Svanborg C (2015) Innate immunity and genetic determinants of urinary tract infection susceptibility. Curr Opin Infect Dis 28(1):88–96PubMedGoogle Scholar
  38. 38.
    Nielubowicz GR, Mobley HL (2010) Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7(8):430–441CrossRefPubMedGoogle Scholar
  39. 39.
    Sivick KE, Mobley HL (2010) Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78(2):568–585CrossRefPubMedGoogle Scholar
  40. 40.
    Song J, Abraham SN (2008) TLR-mediated immune responses in the urinary tract. Curr Opin Microbiol 11(1):66–73CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303(5663):1522–1526CrossRefPubMedGoogle Scholar
  43. 43.
    Ragnarsdottir B, Jonsson K, Urbano A, Gronberg-Hernandez J, Lutay N, Tammi M et al (2010) Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLOS ONE 5(5):e10734CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ragnarsdottir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C (2007) Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 196(3):475–484CrossRefPubMedGoogle Scholar
  45. 45.
    Lundstedt AC, Leijonhufvud I, Ragnarsdottir B, Karpman D, Andersson B, Svanborg C (2007) Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J Infect Dis 195(8):1227–1234CrossRefPubMedGoogle Scholar
  46. 46.
    Lundstedt AC, McCarthy S, Gustafsson MC, Godaly G, Jodal U, Karpman D et al (2007) A genetic basis of susceptibility to acute pyelonephritis. PLOS ONE 2(9):e825CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301(5629):105–107CrossRefPubMedGoogle Scholar
  48. 48.
    Berry RE, Klumpp DJ, Schaeffer AJ (2009) Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect Immun 77(7):2762–2772CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bishop BL, Duncan MJ, Song J, Li G, Zaas D, Abraham SN (2007) Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 13(5):625–630CrossRefPubMedGoogle Scholar
  50. 50.
    Doye A, Mettouchi A, Bossis G, Clement R, Buisson-Touati C, Flatau G et al (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111(4):553–564CrossRefPubMedGoogle Scholar
  51. 51.
    Duncan MJ, Li G, Shin JS, Carson JL, Abraham SN (2004) Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279(18):18944–18951CrossRefPubMedGoogle Scholar
  52. 52.
    Martinez JJ, Hultgren SJ (2002) Requirement of Rho-family GTPases in the invasion of type 1‑piliated uropathogenic Escherichia coli. Cell Microbiol 4(1):19–28CrossRefPubMedGoogle Scholar
  53. 53.
    Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69(7):4572–4579CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Szabados F, Kleine B, Anders A, Kaase M, Sakinc T, Schmitz I et al (2008) Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol Lett 285(2):163–169CrossRefPubMedGoogle Scholar
  55. 55.
    Rosen DA, Pinkner JS, Jones JM, Walker JN, Clegg S, Hultgren SJ (2008) Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 76(7):3337–3345CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Dhakal BK, Mulvey MA (2009) Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem 284(1):446–454CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA (2008) Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 10(12):2553–2567CrossRefPubMedGoogle Scholar
  58. 58.
    Schwartz DJ, Chen SL, Hultgren SJ, Seed PC (2011) Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun 79(10):4250–4259CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Anderson GG, Martin SM, Hultgren SJ (2004) Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6(12):1094–1101CrossRefPubMedGoogle Scholar
  60. 60.
    Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ et al (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101(5):1333–1338CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mysorekar IU, Hultgren SJ (2006) Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 103(38):14170–14175CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hunstad DA, Justice SS (2010) Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu Rev Microbiol 64:203–221CrossRefPubMedGoogle Scholar
  63. 63.
    Blango MG, Mulvey MA (2010) Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 54(5):1855–1863CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schilling JD, Lorenz RG, Hultgren SJ (2002) Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70(12):7042–7049CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLOS Med 4(12):e329CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A et al (2007) A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLOS Pathog 3(4):e60CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Song J, Bishop BL, Li G, Duncan MJ, Abraham SN (2007) TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1(4):287–298CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN (2009) TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 106(35):14966–14971CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • G. Magistro
    • 1
  • J. Marcon
    • 1
  • S. Schubert
    • 2
  • C. Gratzke
    • 1
  • C. G. Stief
    • 1
  1. 1.Urologische Klinik und Poliklinik der Universität München, Campus GroßhadernLudwig-Maximilians-Universität MünchenMünchenDeutschland
  2. 2.Max von Pettenkofer-Institut für Hygiene und Medizinische MikrobiologieLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations