Skip to main content
Log in

Wirbelsäulenmetastasen urologischer Tumoren

Diagnostik und konservative Therapie

Vertebral metastases of urogenital carcinomas

Diagnosis and conservative therapy

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die hohe Inzidenz ossärer Metastasen urologischer Tumorentitäten und die damit verbundene Morbidität insbesondere von Wirbelkörpermetastasen erfordert eine exakte Diagnostik und konsequente Therapie. Die Projektionsradiographie besitzt hierbei einen wichtigen Stellenwert zur Diagnose von symptomatischen Knochenläsionen. Der Stellenwert der Computertomographie (CT) besteht v. a. darin, einen Stabilitätsbewertung von Knochenläsionen durchzuführen und ist für die Therapieplanung unverzichtbar. Die Magnetresonanztomographie (MRT) besitzt wie die Positronenemissionstomographie-CT (PET-CT) die höchste diagnostische Genauigkeit für die Detektion ossärer Metastasen, wobei insbesondere auch eine exakte Beurteilung der intra- und extraossären Metastasenkomponenten möglich ist. Die PET-CT, PET-MRT oder Einzelphotonenemissions-CT (SPECT-CT) haben in Verbindung mit spezifischen Tracern aufgrund ihrer hohen Spezifität und Sensitivität das Potential konventionelle Verfahren abzulösen. Die Basis der konservativen Therapie ossärer Metastasen bildet neben einer suffizienten Analgesie, der Gabe von Kalzium und Vitamin D3, die Gabe von Bisphophonaten und Antikörper gegen RANKL („receptor activator of nuclear factor kappa-B ligand“, Denosumab), welche die Rate skelettaler Ereignisse senken können. Für das ossär metastasierte kastrationsrefraktäre Prostatakarzinom steht zudem mit Radium-223-Dichlorid eine zielgerichtete Radionuklidtherapie zur Verfügung, die neben einer Verlängerung des Gesamtüberlebens zu einer Reduktion von symptomatischen skelettalen Ereignissen führen kann.

Abstract

The high incidence of bone metastases of urologic neoplasms and their morbidity, especially of vertebral metastases, requires exact diagnosis and consequent therapy. Conventional radiography plays an important role in the diagnosis of symptomatic bone lesions. Computed tomography can evaluate the stability of metastatic lesions and is indispensable for therapy planning. MRI and PET-CT have the highest diagnostic accuracy for the detection of bone metastases and MRI can evaluate their intra- and extraosseus components. PET-CT, PET-MRI, or SPECT-CT in combination with specific tracers – due to their high specificity and sensitivity – have the potential to replace conventional methods in the future. Conservative treatment basically consists of analgesic therapy, the administration of calcium and vitamin D3 and bisphosphonates or inhibitors of RANKL (denosumab). Moreover radium-223-dichloride can improve overall survival and the time to the first symptomatic skeletal event in castration-resistant prostate cancer patients with bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Greenspan A (2002) Skelettradiologie, 3. Aufl. Urban & Fischer, München

  2. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176. doi:10.1053/ctrv.2000.0210

    Article  CAS  PubMed  Google Scholar 

  3. Pilge H, Holzapfel BM, Prodinger PM et al (2011) Diagnostics and therapy of spinal metastases. Orthopade 40(2):185–193 (quiz 194–195). doi:10.1007/s00132-010-1738-6

    Article  CAS  PubMed  Google Scholar 

  4. Campanacci M (1999) Bone and soft tissue tumors. Springer, Berlin Heidelberg New York

  5. Schaser KD, Melcher I, Mittlmeier T et al (2007) Surgical management of vertebral column metastatic disease. Unfallchirurg 110(2):137–159 (quiz 160–161). doi:10.1007/s00113-007-1232-8

    Article  PubMed  Google Scholar 

  6. Gilbert RW, Kim JH, Posner JB (1978) Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol 3(1):40–51. doi:10.1002/ana.410030107

    Article  CAS  PubMed  Google Scholar 

  7. Sauer G, Barth TF, Moller P (2007) Pathophysiology of bone metastases in urologic carcinomas. Urologe A 46(8):888–890. doi:10.1007/s00120-007-1519-y

    Article  CAS  PubMed  Google Scholar 

  8. Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 45(1):53–64

    CAS  PubMed  Google Scholar 

  9. Stäbler A (2005) Muskuloskelletales System, 2. Aufl. Springer, Berlin Heidelberg New York

  10. Hamaoka T, Madewell JE, Podoloff DA et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 2214):2942–2953. doi:10.1200/JCO.2004.08.181

    Article  Google Scholar 

  11. Higinbotham NL, Marcove RC (1965) The management of pathological fractures. J Trauma 5(6):792–798

    Article  CAS  PubMed  Google Scholar 

  12. Yang HL, Liu T, Wang XM et al (2011) Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21(12):2604–2617. doi:10.1007/s00330-011-2221-4

    Article  PubMed  Google Scholar 

  13. Delank KS, Wendtner C, Eich HT, Eysel P (2011) The treatment of spinal metastases. Dtsch Arztebl Int 108(5):71–80). doi:10.3238/arztebl.2011.0071

    PubMed  PubMed Central  Google Scholar 

  14. Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25(22):3281–3287. doi:10.1200/JCO.2006.09.2940

    Article  PubMed  Google Scholar 

  15. Padhani AR, Ree K van, Collins DJ et al (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200(1):163–170. doi:10.2214/AJR.11.8185

    Article  PubMed  Google Scholar 

  16. Wilhelm T, Stieltjes B, Schlemmer HP (2013) Whole-body-MR-diffusion weighted imaging in oncology. Rofo 185(10):950–958

    CAS  PubMed  Google Scholar 

  17. Even-Sapir E, Metser U, Mishani et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  18. Shandal V, Kumar R (2010) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 106(1):132–133. doi:10.1111/j.1464-410X.2010.09451_3.x

    Article  PubMed  Google Scholar 

  19. Beheshti M, Vali R, Waldenberger P et al (2010) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 12(1):98–107. doi:10.1007/s11307-009-0239-7

    Article  PubMed  Google Scholar 

  20. Rothke MC, Afshar-Oromieh A, Schlemmer HP (2013) Potential of PET/MRI for diagnosis of prostate cancer. Radiologe 53(8):676–681. doi:10.1007/s00117-013-2499-0

    Article  CAS  PubMed  Google Scholar 

  21. Osborne JR, Akhtar NH, Vallabhajosula S et al (2013) Prostate-specific membrane antigen-based imaging. Urol Oncol 31(2):144–154. doi:10.1016/j.urolonc.2012.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lesche R, Kettschau G, Gromov AV et al (2014) Preclinical evaluation of BAY 1075553, a novel (18)F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 41(1):89–101. doi:10.1007/s00259-013-2527-3

    Article  CAS  PubMed  Google Scholar 

  23. Froehner M, Holscher T, Hakenberg OW, Wirth MP (2014) Treatment of bone metastases in urologic malignancies. Urol Int 93(3):249–256. doi:10.1159/000365788

    Article  CAS  PubMed  Google Scholar 

  24. Fizazi K, Carducci M, Smith M et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377(9768):813–822. doi:10.1016/S0140-6736(10)62344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vadhan-Raj S, Moos R von, Fallowfield LJ et al (2012) Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid. Ann Oncol 23(12):3045–3051. doi:10.1093/annonc/mds175

    Article  CAS  PubMed  Google Scholar 

  26. Lipton A, Fizazi K, Stopeck AT et al (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48(16):3082–3092. doi:10.1016/j.ejca.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  27. L’Esperance S, Vincent F, Gaudreault M et al (2012) Treatment of metastatic spinal cord compression: cepo review and clinical recommendations. Curr Oncol 19(6):e478–e490. doi:10.3747/co.19.1128

    Google Scholar 

  28. Zech DF, Grond S, Lynch J et al (1995) Validation of World Health Organization Guidelines for cancer pain relief: a 10-year prospective study. Pain 63(1):65–76

    Article  CAS  PubMed  Google Scholar 

  29. Fizazi K, Lipton A, Mariette X et al (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27(10):1564–1571. doi:10.1200/JCO.2008.19.2146

    Article  CAS  PubMed  Google Scholar 

  30. Neville-Webbe HL, Coleman RE (2010) Bisphosphonates and RANK ligand inhibitors for the treatment and prevention of metastatic bone disease. Eur J Cancer 46(7):1211–1222. doi:10.1016/j.ejca.2010.02.041

    Article  CAS  PubMed  Google Scholar 

  31. Smith MR, Egerdie B, Hernandez Toriz N et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361(8):745–755. doi:10.1056/NEJMoa0809003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henry DH, Costa L, Goldwasser F et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–1132. doi:10.1200/JCO.2010.31.3304

    Article  CAS  PubMed  Google Scholar 

  33. Coleman R, Body JJ, Aapro M et al (2014) Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol 25(Suppl 3):124–137. doi:10.1093/annonc/mdu103

    Article  Google Scholar 

  34. Sartor O, Coleman R, Nilsson S et al (2014) Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 15(7):738–746. doi:10.1016/S1470-2045(14)70183-4

    Article  CAS  PubMed  Google Scholar 

  35. Parker C, Nilsson S, Heinrich D et al (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369(3):213–223. doi:10.1056/NEJMoa1213755

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. B. Keck, M. Hammon, M. Uder, J. Huber, P.J. Goebell, F. Kunath, B. Wullich und R.H. Richter geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Keck.

Additional information

B. Keck and M. Hammon these authors contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keck, B., Hammon, M., Uder, M. et al. Wirbelsäulenmetastasen urologischer Tumoren. Urologe 55, 226–231 (2016). https://doi.org/10.1007/s00120-015-3977-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-015-3977-y

Schlüsselwörter

Keywords

Navigation